Z88 Hardware Description

THE Z88 HARDWARE DESCRIPTION

Issue 2 - March 1998.

 

References :

1 - Z88 Service Manual - Issue 1, January 1985

(Prepared by BRAVEMAY for Cambridge Computer Ltd.)

 

2 - DMF690N Module Specification - 15/07/98

(Prepared by OPTREX, Approved by Cambridge Computer Ltd.)

 

 

 

Introduction

The Z88 is organized around four integrated circuits: the Z80 microprocessor, a specialized gate-array called 'Blink', the ROM chip and a pseudo-static RAM chip. There are 8 connectors on the motherboard: the expansion connector, the serial port, 2 for keyboard connections, one for the LCD and 3 for the slot connectors.  We will describe here the pinout, the usage with modifications if possible.

 

1 - Integrated circuits

 

This section will describe the four IC used in the Z88.

IC1 : the Z80 CPU

IC2 : the RAM

IC3 : the ROM

IC4 : the Blink

An additional part is devoted to the Flash EPROM s.

 

 

 

1.1 - The Z80 CPU

 

1.1.1 - Version

 

  The microprocessor is a standard Z80 running in CMOS version for low working and standby power consumption.

For Z88, 4MHz and 6MHz capable Z80 CMOS were used : Z84C004PSC or Z84C0006PSC.

 

 

1.1.2 - Pinout

 

      +--------------+

  A11 |1    +--+   40| A10

  A12 |2           39| A9

  A13 |3           38| A8

  A14 |4           37| A7

  A15 |5           36| A6

  CLK |6           35| A5

   D4 |7           34| A4

   D3 |8           33| A3

   D5 |9           32| A2

   D6 |10  Z84C00  31| A1

  VCC |11    CPU   30| A0

   D2 |12          29| GND

   D7 |13          28| /RFSH

   D0 |14          27| /M1

   D1 |15          26| /RST

/INT |16          25| /BUSRQ

/NMI |17          24| /WAIT

/HALT |18          23| /BUSAK

/MREQ |19          22| /WR

/IORQ |20          21| /RD

      +--------------+

 

 

 

1.1.3 - Clocks

 

Two clocks are driving the Z80. MCK, the master clock and SCK, the standby clock. The MCK (3.2768 MHz) is generated by a 9.8304 Xtal to the Blink and divided by 3, given to the pin 6. The SCK pulses at 25.6 KHz and is active on COMA state.

 

It is perhaps possible to overclock the Z80 if the Blink supports it! Actually, we can find up to 20MHz Z80 CMOS CPU. I think that 8MHz would be reasonable. But we must be sure that the LCD and the Blink will support these frequencies. (not until I got the Blink datasheets) There will probably be troubles with the Z88 clock... Interrupts will have to be rewritten...

 

1.1.4 - Interrupts

 

There are three pins for dealing with interruptions :

BUSRQ (Bus Request) : used for DMA (not connected on the Z88)

NMI (Non Maskable Interrupt) : Jumps to $0066 (BatLow, RTC...)

INT (Ordinary Interrupt) : used in mode 1 (IM1)

 

For dealing with the maskable interruptions (INT), the Z80 can be switch in three modes.

The interrupt mode 0 (IM0) : for 8080 compatibility

The interrupt mode 1 (IM1) : for non-zilog environnemt (our case)

The interrupt mode 2 (IM2) : for zilog environnement

 

On reset, OZ puts the Z80 in IM1.

If interrupts are enabled via an OZ_EI, every INT signal jumps to $0038. This routines deals with the keyboard, the bleep, the alarms...

 

 

1.2 - The RAM

 

1.2.1 - RAM types

 

  The serial chip is a NEC uPD42832C. This is a 32K pseudo-static RAM chip. These chips are like dynamic RAM but have the ability to retain

data under a standby voltage (around 2V) with a self refresh circuitry.  Dynamic RAM chip are incompatible. Static RAM chip can be use without any problem. The replacement is recommended because theyre power drain is very lowest (1/10 ratio).

 

 

1.2.2 - RAM socket

 

  The motherboard layout has 32 pins. It is tracked for a 128K chip. On issue 4 machine a 32K chip is soldier using the 28 low pins.

 

      +--------------+

  POE |1    +--+   32| VCC

  A16 |2           31| A15

  A14 |3           30| VCC

  A12 |4           29| WE

  A7  |5           28| A13

  A6  |6           27| A8

  A5  |7    Z88    26| A9

  A4  |8    RAM    25| A11

  A3  |9    PCB    24| POE

  A2  |10          23| A10

  A1  |11          22| CE

  A0  |12          21| D7

  D0  |13          20| D6

  D1  |14          19| D5

  D2  |15          18| D4

  VSS |16          17| D3

      +--------------+

 

 

This table describes the 128K chip pinout and Blink signals.

 

Pin     Chip    Blink   Pin     Chip    Blink

1       POE     POE     32      -       VCC

2       A16     MA16    31      A15     MA15

3       A14     MA14    30      [CS]    VCC

4       A12     MA12    29      [WE]    WRB

5       A7      MA7     28      A13     MA13

6       A6      MA6     27      A8      MA8

7       A5      MA5     26      A9      MA9

8       A4      MA4     25      A11     MA11

9       A3      MA3     24      [OE]    POE

10      A2      MA2     23      A10     MA10

11      A1      MA1     22      [CE]    IRCE (internal RAM chip enable)

12      A0      MA0     21      D7      MDH

13      D0      MDA     20      D6      MDG

14      D1      MDB     19      D5      MDF

15      D2      MDC     18      D4      MDE

16      VSS     GND     17      D3      MDD

 

 

1.2.3 - Internal RAM upgrade

 

  It is easily possible to upgrade the internal RAM to 128K. For a 512K upgrade some hardware modification are needed. The OZ version 4 is the only one able to recognize a 512K internal upgrade.  For a 128K upgrade you can put a Toshiba TC551001 static RAM chip. It is very cheap (about £4). First, make a backup of your sensible files. Disassembly the box without batteries. Deconnect the two keyboard

ribbons, the screen ribbon. Put your moterboard on a dry table without metal. Unsoldier the old chip. Soldier a 32 pins flat socket, Insert

the new chip. You will have to cut some plastic structures (like an X) in the keyboard plastic support.

 

  For a 512K upgrade, you will have to wire the A17 and A18 pins with a link directly to address lines on a slot connector soldier. Only the OZ version 4 for UK is able to recognise an internal 512K upgrade.  Replacing the old 42832 Rams will spare your battery life time. The slowest rams have less consumation (120 or 150 ns). For example :

 

Size    Chip Type      Speed   Power (mW)     Manufacturer

(K)            (ns)    Act/Stdby

 

32K  (PS)      uPD42832C      -15L (150)     220 / 2.75     Nec

128K (S)       TC551001BPL    -10L (100)     27.5/ 0.02     Toshiba

512K (S)       TC554001BPL    -70  (70)      50.0/ 0.30     Toshiba

128K (PS)      TC518128PL     -12  (120)     275 / 0.55     Toshiba

512K (PS)      TC518512PL     -10  (100)     275 / 1.00     Toshiba

128K (PS)      HM658128ALP                    Hitashi

512K (PS)      HM658512LP                     Hitashi

512K (S)       HM628512LP                     Hitashi

 

(PS=Pseudo-static RAM chip, S=Static RAM chip)

 

 

 

1.3 - The ROM

 

1.3.1 - ROM types

 

  The serial ROM chip is an UV EPROM NEC uPD23C1000C for foreign OZ. The UK version may be an EPROM chip for v2.2, the v3.0 supports exactly the same software but have been put in a ROM which have only 28 pins. The last v4.0 is fitted on an EPROM chip. The socket layout isn't standard according to the NEC standard (see below). If you wish to fit a new EPROM , be very careful, pins 2 and 24 must be exchanged according to the JEDEC standard. Particulary if you want to use actual 128K EPROM chip, like 27C1001. In theory, you can fit larger EPROM (like 27C2000 or 27C4000) if you wire the addresses lines.

 

1.3.2 - ROM socket

 

The mother has 32 pins tracked to the NEC standard.

 

      +--------------+

  VCC |1    +--+   32| VCC

  ROE |2           31| VCC

  A15 |3           30| VCC

  A12 |4           29| A14

  A7  |5           28| A13

  A6  |6           27| A8

  A5  |7    Z88    26| A9

  A4  |8    ROM    25| A11

  A3  |9    PCB    24| A16

  A2  |10          23| A10

  A1  |11          22| CE

  A0  |12          21| D7

  D0  |13          20| D6

  D1  |14          19| D5

  D2  |15          18| D4

  VSS |16          17| D3

      +--------------+

 

 

This table describes the 128K chip pinout and Blink signals.

 

Pin     Chip    Blink   Pin     Chip    Blink

1       VPP     VCC     32      VCC     VCC

2       [OE]    ROE     31      [PGM]   VCC

3       A15     MA15    30      VCC     VCC

4       A12     MA12    29      A14     MA14

5       A7      MA7     28      A13     MA13

6       A6      MA6     27      A8      MA8

7       A5      MA5     26      A9      MA9

8       A4      MA4     25      A11     MA11

9       A3      MA3     24      A16     MA16

10      A2      MA2     23      A10     MA10

11      A1      MA1     22      [CE]    IPCE (Internal PROM chip enable)

12      A0      MA0     21      D7      MDH

13      D0      MDA     20      D6      MDG

14      D1      MDB     19      D5      MDF

15      D2      MDC     18      D4      MDE

16      VSS     GND     17      D3      MDD

 

 

 

1.4 - The BLINK gate array

 

  This private chip is a NEC uPD65031. It is CMS soldiered on the PCB. It manages the memory bank switching, the LCD, the serial port,

the interrupts...It is the heart of the machine. Actually we just know its pinout and the description of some registers. The conceptors have

lost the original notes...

 

Pin     Chip    Z80     Pin     Chip

1       GND            52      VDD

2       VDD            53      GND

3       IOR     [IORQ]  54      MA16

4       CRD     [RD]    55      MA15

5       MRQ     [MREQ]  56      MA14

6       HLT     [HALT]  57      MA12

7       NMIB    [NMI]   58      MA7

8       INTB    [INT]   59      MA13

9       CDB     D1      60      MA6

10      ROUT    [RST]   61      MA8

11      CDA     D0      62      MA5

12      CMI     [MI]    63      WRB

13      CDH     D7      64      MA9

14      CDC     D2      65      MA4

15      CA0     A0      66      MA11

16      CDG     D6      67      MA3

17      CA1     A1      68      IPCE    (ROM.0 CE)

18      CDF     D5      69      MA2

19      CA2     A2      70      MA10

20      CDD     D3      71      MA1

21      CA3     A3      72      MA0

22      CDE     D4      73      MDH

23      CA4     A4      74      MDA

24      CA5     A5      75      MDG

25      CA15    A15     76      MDB

26      CA6     A6      77      MDF

27      CA14    A14     78      MDC

28      GND            79      VDD

29      VDD            80      GND

30      CA13    A13     81      MDE

31      CA7     A7      82      MDD

32      CA8     A8      83      MA17

33      CA12    A12     84      MA18

34      CA9     A9      85      MAW(19)

35      CA11    A11     86      SE1     (slot1 CE)

36      CA10    A10     87      POE

37      TxD     (serial)       88      ROE

38      RCS     (serial)       89      PGMB    (PGM low)

39      IRCE    (RAM.0 CE)     90      EOE

40      GND            91      SE3     (slot3 CE)

41      RxD     (serial)       92      FLP     (flap)

42      CTS     (serial)       93      SE2     (slot2 CE)

43      DCD     (serial)       94      SNS     (sens line)

44      PN1     (display)      95      VPON    (VPP on)

45      LD      (display)      96      BTL     (Batt low)

46      FR      (display)      97      RIN

47      XSCL    (display)      98      MCK

48      LD0     (display)      99      SCK

49      LD1     (display)      100     SPKR    (speaker)

50      LD2     (display)

51      LD3     (display)

 

 

 

1.5 - The Flash EPROM s

 

  The new Flash EPROM cards represent a new way for Z88 storage. Its main feature is an integrated electrical erasure. The prototype cards are built with an Intel 28F008SA and the serial cards uses the Intel 28F008S5 (which is fastest). Theyre low relative cost make them the new media for 1 Megabyte application card and file storage.  They have 44 pins in a PSOP format (0.5 mm between each pin). They are linked to the slot connector like standard EPROM s.

 

     +--------------+

  VPP |1    +--+   44| VCC

  RP# |2           43| -

  A11 |3           42| A12

  A10 |4           41| A13

  A9  |5           40| A14

  A8  |6           39| A15

  A7  |7           38| A16

  A6  |8           37| A17

  A5  |9           36| A18

  A4  |10          35| A19

  -   |11  Intel   34| -

  -   |12  28F008  33| -

  A3  |13  SA/S5   32| -

  A2  |14          31| -

  A1  |15          30| WE#

  A0  |16          29| OE#

  D0  |17          28| -

  D1  |18          27| D7

  D2  |19          26| D6

  D3  |20          25| D5

  GND |21          24| D4

  GND |22          23| VCC

      +--------------+

The table below describes the links between the edge connector and the chip.

 

Slot signal    Flash Signal

1  MA16        A16     38

2  MA15        A15     39

3  MA12         A12     42

4  MA7         A7      7

5  MA6         A6      8

6  MA5         A5      9

7  MA4         A4      10

8  MA3         A3      13

9  MA2         A2      14

10 MA1         A1      15

11 MA0         A0      16

12 MDA         D0      17

13 MDB         D1      18

14 MDC         D2      19

15 SNS

16 GND         GND     21

17 GND         GND     22

18 MA14        A14     40

19 VPP         VPP     1

20 VCC         VCC     44,23

21 VCC         -

22 PGM         WE#     30

23 MA13        A13     41

24 MA8         A8      6

25 MA9         A9      5

26 MA11        A11     3

27 POE         -

28 EOE         OE#     29

29 MA10        A10     4

30 SE3         CE#     43

31 MDH         D7      27

32 MDG         D6      26

33 MDD         D3      20

34 MDE         D4      24

35 MDF         D5      25

36 MA17        A17     37

37 MA18        A18     36

38 MA19        A19     35

 

 

Other pins:

 

Pin 1 : Vpp

Pin 23: Vcc

Pin 44: Vcc

Must be connected to a 100nF ceramic capacitor.

 

Pin 2 : RP# connected to VCC

 

NB: all the VCC and GND pins have to be connected.

 

 

2 - The Connectors

 

2.1 - SLOT connectors

 

  It is private format connector wiring 38 pins. They are devoted for memory addressing. Each slot is able to address 1024K. The slot 3 present a Vpp (12V) line, useful for EPROM programming. Pseudo-static RAM, static RAM, EPROM and Flash EPROM can be used.

 

Slot    RAM/ROM RAM/ROM EPROM    Pins for       Pins for       Pins for

pins    Slot 1 Slot 2  Slot 3  32K     128K    32K

        Signals Signals Signals EPROM    EPROM    RAM

 

   1    A16     A16     A16     -       24      -

   2    A15     A15     A15     -       3       -

   3    A12     A12     A12     2       4       2

   4    A7      A7      A7      3       5       3

   5    A6      A6      A6      4       6       4

   6    A5      A5      A5      5       7       5

   7    A4      A4      A4      6       8       6

   8    A3      A3      A3      7       9       7

   9    A2      A2      A2      8       10      8

  10    A1      A1      A1      9       11      9

  11    A0      A0      A0      10      12      10

  12    D0      D0      D0      11      13      11

  13    D1      D1      D1      12      14      12

  14    D2      D2      D2      13      15      13

  15    SNSL    SNSL    SNSL    -       -       -

  16    GND     GND     GND     14      16      14

  17    GND     GND     GND     14      16      14

  18    A14     A14     A14     27      29      1

  19    VCC     VCC     VPP     1       1       -

  20    VCC     VCC     VCC     28      32      -

  21    VCC     VCC     VCC     -       -       28

  22    WEL     WEL     PGML    -       31      -

  23    A13     A13     A13     26      28      26

  24    A8      A8      A8      25      27      25

  25    A9      A9      A9      24      26      24

  26    A11     A11     A11     23      25      23

  27    POE     POE     POE     -       -       22

  28    ROE     ROE     EOE     22      2       -

  29    A10     A10     A10     21      23      21

  30    SE1     SE2     SE3     20      22      20

  31    D7      D7      D7      19      21      19

  32    D6      D6      D6      18      20      18

  33    D3      D3      D3      15      17      15

  34    D4      D4      D4      16      18      16

  35    D5      D5      D5      17      19      17

  36    A17     A17     A17     -       -       -

  37    A18     A18     A18     -       -       -

  38    A19     A19     A19     -       -       -

 

 

2.2 - The expansion port connector

 

  It is a standard 2.54mm double sided 48 pins male connector for expansion. It presents all the Z80 bus signals. On the issue 4 version, the flap has been sealed because expansion insertion may result in a crash due to static electricity.

 

        Component              P C B

        Side A Edge    Side B

 

        GND     1       SNSL    see below

        A11     2       +12v

        A12     3       A10

        A13     4       A9

        A14     5       A8

        A15     6       A7

        clock   7       A6

        D4      8       A5

        D3      9       A4

        D5      10      A3

        D6      11      A2

        VCC     12      A1

        D2      13      A0

        GND     14      GND

        D0      15      D7

        D1      16      M1L

        INTL    17      FLP     (flap switch)

        slot    18      slot

        HALTL   19      NMIL

        MREQL   20      WRL

        IORQL   21      RDL

        MAWL    22      RESETL Resets Z88 (2 pulses required)

        -BT     23      SVCC    5.4v while the machine is 'on.'

        GND     24      SNSL

 

SNSL allows the machine to be automaticly placed into comotose state

buy causing a 'power fail interupt' when an edge connector is plugged

into to the expansion slot of the Z88.

 

 

2.3 - The Serial Port Connector

 

This is a DB9 male connector with a private pinout describe below.

 

Pin     Signal                 Sens

1 -     unswitched  +5v at 10 uA                      output

2 TxD  transmit data                  output

3 RxD   receive data                   input

4 RTS   ready to send                  output

5 CTS   clear to send                  input

6 -            reserved for future use

7 GND

8 DCD   data carrier detect                   input

9 DTR   switched +5v  at 1mA                  output

 

Note : DTR is high when the machine is awake. The machine is always

awake when the screen is active, but even if asleep the machine will

wake every minute or so to carry out various housekeeping tasks, such

as checking for alarms, and at these time DTR will go high. Pin 1 will

show a signal if there is power available to the machine.

 

The PC DB9 female connector

1 DCD

2 RxD

3 TxD

4 DTR

5 GND

6 DSR

7 RTS

8 CTS

9 -

 

The PC link cable

 

Z88     PC      Z88 (front view)               PC (front view)

        1 - 4

2 ---------    2       1 2 3 4 5              5 4 3 2 1

3 ---------    3       6 7 8 9               9 8 7 6

4 ---------    8

5 ---------    7

7 ---------    5

8 - 9

 

 

 

2.4 - The keyboard connectors

 

  The keyboard is just 8 * 8 matrix between the Z80 address and data buses. It is connected on SK6 and SK7. In theory it is possible to replace the membrane by a PCB with mechanical keys (and resistors in serial). The rubber keyboard technology seems to consume a lot of power.

 

SK6 signals            SK7 signals

1       A14            1       D5

2       A15            2       D4

3       A13            3       D3

4       A12            4       D1

5       A11            5       D7

6       A10            6       D0

7       A9             7       D6

8       A8             8       D2

 

 

 

Keyboard matrix (for the QWERTY UK)

 

A15 A14 A13 A12 A11 A10 A09 A08

2   1   3   4   5   6   7   8

 

RSH HLP [   ]   -   =   \   DEL    5   D7

SQR LSH SPC LFT RGT DWN UP  ENT    7   D6

ESC TAB 1   2   3   4   5   6      1   D5

INX DIA Q   W   E   R   T   Y      2   D4

CAP MEN A   S   D   F   G   H      3   D3

.   ,   Z   X   C   V   B   N      8   D2

/   ;   L   M   K   J   U   7      4   D1

£   "   0   P   9   O   I   8      6   D0

 

 

  There are two issues for the keyboard membrane : a red one, the first, and the green one which is the last and the most common. The first issue (red) seems to be often unreliable with a lot of short circuits which sends a lot of unexpected characters... It is impossible to repair them. The green issues are very good. I have got mine since ten years and I am actually typing on it...

 

  The keyboard is probably the only part with which you encountered troubles. You can keep the same for all your life if you think to clean the contacts sometimes. After a long time, some carbon particle agglomerate on the membrane and generate short-circuits. The only thing to do is to clean the contact surfaces with some alcohol. Unscrew the case, deconnect the keyboard ribbons. Pull out the rubber and be very careful of the three slot. Clean all the keys surfaces on the rubber and the membrane with a tissue with a few standard alcohol (90°). Dry it before reassembling. Do it carefully especially on the cursor, tab, diamond, square, enter and shift keys.

 

 

2.5 - The LCD connector

 

  The most common LCD module is the DMF690N produced by OPTREX. Some previous versions exist, with more failure and less contrast. This unit has its own PCB. The LCD panel is a dot matrix of 640*64 pixels, the NRD7482. It is driven by nine CMS chips.One SED1610 : a 86 lines driver and eight SED1600 : 80 rows dirvers.

Another IC is devoted to voltage generation.

 

  The module is connected by a special ribbon with 14 links on SK5.

 

Ribbon signals:

14 is the left one, 1 is on the right in top view.

 

Pin     Symbol  Level   Function

1       VDD     -       Base supply (0V)

2       VSS     -       Power supply for Logic

3       VLCD    -       Power supply for LCD driving

4       LP      H>L     Date Latch signal

5       FR      H/L     Alternate signal for LCD driving

6       YDIS    L       Display off signal

7       NC      -       No connection

8       DIN     H       Frame signal

9       XSCL    H>L     Clock signal for shifting serial data

10      NC      -       No connection

11      D0      H/L     Display data

12      D1      H/L     Display data

13      D2      H/L     Display data

14      D3      H/L     Display data

 

All of these signals are directly managed by the blink. It builts the screen by reading directly in the memory the different character set and screen base. The cursor is hardware managed too.

 

 

 

Conclusion

 

There is still a lot of things to do to improve the Z88 hardware:

- IR serial interface

- mechanical keyboard

- overclocked Z80 CPU

- small integrated supply with NiMH battery charger

- video interface

- A/D and D/A converter interface

- ...

 

 

I'll translate the Z88 service manual from paper to a file as soon as possible.

 

Thanks to Chris Morris for the LCD datasheets.

 

I'm still searching the BLINK datasheets. 

 

For anything about Z88 don't hesitate to contact me at :

 

       tpeycru@club-internet.fr

 

Thierry Peycru (Zlab), March 1998.