
 Copyright Psion Computers PLC 1997

This manual is the copyrighted work of Psion Computers PLC, London, England.

The information in this document is subject to change without notice.

Psion and the Psion logo are registered trademarks. Psion Series 5, Psion Series 3c, Psion Series 3a, Psion Series 3
and Psion Siena are trademarks of Psion Computers PLC.

EPOC32 and the EPOC32 logo are registered trademarks of Psion Software PLC.

 Copyright Psion Software PLC 1997

All trademarks are acknowledged.

OPL
BASICS

This part of the OPL User Guide introduces the basic concepts of programming in OPL. It is
divided into 4 sections:

••••• Creating & Running Programs: this covers the stages of entering, translating and running a
program in OPL.

••••• Variables & Constants: this section explains the way values are stored and handled in OPL.

••••• Loops & Branches: this section covers how to repeat commands, wait for given conditions
and so on.

••••• Calling Procedures: this explains how to link several parts of a program together.

OPL

B A S I C S

CONTENTS

CREATING & RUNNING PROGRAMS.. 1
CREATING A NEW MODULE .. 2

INSIDE THE PROGRAM EDITOR ... 2
AN EXAMPLE PROCEDURE TO TYPE IN ... 3

TRANSLATING A MODULE... 4
RUNNING AFTER TRANSLATING... 5
FILE MANAGEMENT .. 5

MORE ABOUT RUNNING MODULES... 6
STOPPING A PROGRAM WHILE IT�S RUNNING ... 7

MENU OPTIONS WHILE EDITING .. 7
SUMMARY ... 9

VARIABLES & CONSTANTS ..10
DECLARING VARIABLES ... 11

NUMBERS .. 11
TEXT ... 12
ARRAY VARIABLES ... 12
INITIAL VALUES ... 12
CHOOSING DESCRIPTIVE NAMES .. 12

GIVING VALUES TO VARIABLES ... 13
ASSIGNING VALUES .. 13
ARITHMETIC OPERATIONS ... 14
VALUES FROM FUNCTIONS ... 14
EXPRESSIONS .. 15
CONSTANTS .. 15
PROBLEMS WITH INTEGERS ... 16
OPERATIONS ON STRINGS ... 16

DISPLAYING VARIABLES ... 16
WHERE THE CURSOR GOES AFTER A PRINT ... 17
DISPLAYING A LIST OF THINGS ... 17
DISPLAYING THE QUOTE CHARACTER ... 17
SINGLE KEYPRESSES .. 19
EXAMPLE USING GET$.. 19
MODIFIER KEYS ... 19

SUMMARY ... 20

OPL

B A S I C S

LOOPS & BRANCHES ...21
REPEATING INSTRUCTIONS (LOOPS) .. 22
DO...UNTIL ... 22
WHILE...ENDWH... 22

EXAMPLE USING WHILE...ENDWH .. 23
�NESTING� LOOPS - THE �TOO COMPLEX� MESSAGE ... 24
EXAMPLE USING IF 24
OR OPERATOR .. 24
EXAMPLE USING DO...UNTIL AND IF .. 24
FUNCTIONS AS ARGUMENTS TO OTHER FUNCTIONS .. 24
LOGICAL OPERATORS .. 25

JUMPING TO A DIFFERENT LINE.. 26
JUMPING OUT OF A LOOP: BREAK.. 26
JUMPING TO THE TEST CONDITION: CONTINUE... 26
JUMPING TO A �LABEL�: GOTO .. 26
UNTIL 0, WHILE 1 27

SUMMARY ... 28

CALLING PROCEDURES ...29
USING MORE THAN ONE PROCEDURE.. 30

MODULES CONTAINING MORE THAN ONE PROCEDURE ... 30
CALLING PROCEDURES ... 30

USES OF CALLING PROCEDURES ... 31
PARAMETERS ... 31

MULTIPLE PARAMETERS .. 32
RETURNING VALUES... 33

GLOBAL VARIABLES.. 34
PASSING BACK VALUES .. 34
�UNDEFINED EXTERNALS� ERROR .. 35

SERIES 5 HEADER FILES, CONSTANTS AND PROCEDURE PROTOTYPES 35
SUMMARY ... 36

INDEX ...37

OPL

C R E A T I N G P R O G R A M S 1

CREATING & RUNNING PROGRAMS

There are 3 stages to producing a program using OPL, the Psion programming language:

••••• Type in the program, using the Program editor.

••••• Translate the program. This makes a new version of your program in a format which can
“run”.

••••• Run the program. If it does not work as you had intended, re-edit it, then translate and run
it again.

This section guides you through these stages with a simple example. If you wish to follow the
example, note that each instruction for you to do something is numbered.

OPL

C R E A T I N G P R O G R A M S 2

CREATING A NEW MODULE
As well as the word program, you’ll often see the word module used. The terms program and module are used
almost interchangeably to describe each OPL file - you say “OPL module” like you might say “Word Processor
document”.

Create a new module and give it a name:

➎ 1. Click the ‘New File’ button (or select ‘Create New File’ from the ‘File’ menu).

2. Select ‘Program’ from the ‘Program’ selector.

3. Type test as the ‘Name’ to use for this OPL module and press Enter. You will move into the Program
editor.

Module names can be up to 256 characters long (including their folder names), like other file names on the
Series 5. The names may include any characters except \ , / and : , and any trailing spaces or dots (.) will
be stripped automatically.

➌ 1. Move to the Program icon on the System screen, and select ‘New file’ from the ‘File’ menu.

2. Type test as the name to use for this OPL module and press Enter. You will move into the Program
editor.

Module names can be up to 8 characters long, like other filenames on the Series 3c. The names can include
numbers, but must start with a letter.

It’s always best to choose a name that describes what the module does. Then, when you’ve written several
modules, you can still recognise which is which.

INSIDE THE PROGRAM EDITOR
When you first move into the Program editor you will see that PROC : has already been entered on the first
line, and ENDP on the third.

PROC and ENDP are the keywords that are used to mark the start and end of a procedure. Larger modules are
broken up into procedures, each of which has one specific function to perform. A simple OPL module, like the
one you are going to create, consists of only one procedure.

A procedure consists of a number of statements — instructions upon which the Psion acts. You type these
statements, in order, between PROC : and ENDP. When you come to run the program, the Psion goes through
the statements one by one. When the last statement in the procedure has been completed and ENDP is reached,
the procedure ends.

You can type and edit in the Program editor in much the same way as in the Word application, except that text
you type does not word-wrap; you should press Enter at the end of each statement. Note also that on the Series
3c, the Program editor does not offer text layout features such as styles and emphases.

You can use upper or lower case letters when entering OPL keywords.

OPL

C R E A T I N G P R O G R A M S 3

AN EXAMPLE PROCEDURE
The next few pages work with this example procedure:

PROC test:
PRINT “This is my OPL program”
PAUSE 80
CLS
PRINT “Press a key to finish”
GET

ENDP

This procedure does nothing of any real use it is just an example of how some common OPL keywords (PRINT,
PAUSE, CLS and GET) are used. The procedure first displays This is my OPL program on the screen.
After a few seconds the screen is cleared and then Press a key to finish is displayed. Then, when you
press a key, the program finishes.

TYPE IN AND EDIT THE PROCEDURE

Before you type the statements that constitute the procedure, you must type a name for it, after the word PROC.
The flashing cursor is automatically in the correct place for you to do this (before the colon). You can choose
any name you like within the following restrictions:

➎ Procedure names may have up to 32 characters. The alphabetic and numeric characters are allowed and also

the underscore character, _. The first character of any procedure name must be either an underscore or an
alphabetic character.

➌ Procedure names may have up to 8 characters. The alphabetic and numeric characters are allowed only. The

first character of any procedure name must be an alphabetic character.

For simple procedures which are the only procedure in a module, you might use the same filename you gave the
module.

Type test . The top line should now read PROC test: .

Press the down arrow key. The cursor is already indented, as if the Tab key had been pressed.

You can now type the statements in this procedure:

Type PRINT “This is my OPL program” . (Note the space after PRINT.) Press Enter at the end of the
line.

Each new line is automatically indented, so you don’t need to press the Tab key each time. These indents are not
obligatory, though as you’ll see, they can make a procedure easier to read. However, other spacing, such as the
space between PAUSE and 80 , is essential for the procedure to work properly.

Type the other statements in the procedure. Press Enter at the end of each line. You are now ready to translate
the module and then run it.

When you are entering the statements in a procedure you can, if you want, combine adjacent lines by separating
them with a space and colon. For example, the two lines:

PAUSE 80
CLS

could be combined as this one line:

PAUSE 80 :CLS

You can, of course, use the other Psion applications at any time while you are editing an OPL module.

OPL

C R E A T I N G P R O G R A M S 4

➎ To return to editing your program, either

• tap on the Program icon on the Extras bar, or

• select the module’s name on the System screen, or

• use the Task List to return to the Program editor.

➌ Use Control-Word (hold down the Control key and press the Word button) to return to the Program editor

to continue editing your program.

WHAT THE KEYWORDS DO WHEN THE PROGRAM RUNS

PRINT - takes text you enter between quote marks, and displays it on the screen. The text to be displayed, in the
first statement, is This is my OPL program .

PAUSE - pauses the program, for a specified number of twentieths of a second. PAUSE 80 waits for 4 seconds.
(PAUSE 20 would wait for 1 second, and so on.)

CLS - clears the screen.

GET - waits for you to press a key on the keyboard.

TRANSLATING A MODULE
The translation process makes a separate version of your program in a format which the Psion can run.

You’d usually try to translate a module as soon as you finish typing it in, to check for any typing mistakes
you’ve made, and then to see if the program runs as you intended.

➎ • Select the ‘Translate’ option from the ‘Tools’ menu or tap the ‘Tran’ button on the toolbar menu.

➌ • Select the ‘Translate’ option from the ‘Prog’ menu.

The Series 3c ‘Prog’ menu also has a ‘S3 translate’ option, for translating the current program in a form
which can run on a Series 3 (as opposed to a Series 3c).

WHAT HAPPENS WHEN YOU TRANSLATE A MODULE?

First: the procedures in the module are checked for errors

If the Psion cannot understand a procedure, because of a typing error, a message is shown, such as ‘Syntax
error’. The cursor is positioned at the point where the error was detected, so that you can correct it. For example,
you might have typed PRONT “This is...” , or PAUSE80 without the space.

When you think you’ve corrected the mistake, select ‘Translate’ again. If there is still a mistake, you are again
taken back to where it was detected.

If you’ve already used up almost all of the memory, the Psion may be unable to translate the program, and

will report a ‘No system memory’ message. You’ll need to free some memory before trying again.

When ‘Translate’ can find no more errors, the translation will succeed, producing a separate version of
your module in a format which the Psion can run.

There may still be errors in your program at this point because there are some errors which cannot be detected
until you try to run the program.

OPL

C R E A T I N G P R O G R A M S 5

RUNNING AFTER TRANSLATING
When your module translates successfully, the ‘Run program’ dialog is displayed, asking whether to run the
translated module. You’d usually run it straight away in order to test it.

Running a module does require some free memory, so again a ‘No system memory’ message is possible.

Press ‘Y’ to run the module; the screen is cleared, and the module runs.

When the module has finished running, you return to the Program editor, with the cursor where it was before.

If an error occurs while the module is running, you will return to editing the module, and the cursor will be
positioned at the point where the error occurred.

FILE MANAGEMENT

NEW OPL MODULES

You can create new OPL modules in the same way as new Word documents.

➎ Either create it from the Program editor using the ‘Create New file’ option in ‘File’ menu, or from the

System screen by clicking on the ‘New File’ button (or select ‘Create New File’ from the ‘File’ menu).

The module names are listed on the System screen with a Program icon next to them. The Program icon looks
like a sheet of paper with “OPL” on it. Successfully translated modules will also be listed in the same folder
as their corresponding Program file with the OPL icon next to them. The OPL icon is just the letters “OPL”
with a shadow.

To re-edit an existing OPL program, you can open the Program application and use the ‘Open file’ option
from the ‘File’ menu. You could also select the file directly from the System screen. This will
automatically open the file and launch the Program application. Files which launch their associated
applications when selected are known as documents. The application UID (unique identifier) is stored in
the document header which is read by the system. As far as the user is concerned, the UID specifies a
document’s type. A non-document file does not have an application UID and is displayed on the system
screen with a special icon (a question mark) showing that it is unrecognised. Non-document files are
known as external files.

Opening Program from its icon in the Extras bar will re-open the Program file last in use.

➌ Either create it from the Program editor using the ‘New file’ option in ‘File’ menu, or from the System

screen by moving to the Program icon and using its ‘New File’ option.

Your module names are listed below the Program icon. The Program icon is a speech bubble containing
“OPL” on a grey background. The word ‘Program’ is shown below the icon if there are no modules at all.

The names under the RunOpl icon are those modules which have been translated successfully. The RunOpl
icon is just “OPL” in a speech bubble.

To re-edit an existing OPL program, use the ‘Open file’ option in the Program editor, or move to the
Program icon in the System screen and select the filename from the list.

COPYING MODULES

Use the ‘Copy file’ option in the System screen to copy modules (or translated modules). See the User Guide for
full details. You can also use the ‘Save as’ option in the Program editor itself, to make new copies of an OPL
module.

OPL

C R E A T I N G P R O G R A M S 6

DELETING MODULES

You can delete an OPL module (or a translated version) as you would any other file. Go to the System screen,
move the highlight on to the file and use the ‘Delete file’ option.

➌ If you delete all of your translated modules, the RunOpl icon will remain on the System screen, with the

word RunOpl beneath it.

�FILE IS IN USE�

If you see a “File’ is in use’ (‘File or device in use’ on the Series 3c) error message when deleting or copying an
OPL module, the file is open — it is currently being edited in the Program editor. Exit the file and then try again.

If it’s the translated file you’re trying to delete or copy, “File’ is in use’ (‘File or device in use’ on the Series 3c)
means that the translated file is currently running. Stop the running program by going to the running program,
then either wait for the program to complete or press Ctrl+Esc (on the Series 5; Psion+Esc on the Series 3c) to
stop it, and then you can try again.

MORE ABOUT RUNNING MODULES

RUNNING FROM THE PROGRAM EDITOR

You can run a module at any time from within the Program editor, by selecting ‘Run program’ (‘Run’ on the
Series 3c) from the ‘Tools’ menu (‘Prog’ menu on the Series 3c). This runs the translated version of your
program; if you’ve made changes to the module and haven’t translated it again, you must translate the module
again, or the changes have no effect.

‘Run program’ (‘Run’ on the Series 3c) displays a dialog, letting you select the name of any translated module
which you want to run.

RUNNING MODULES FROM THE SYSTEM SCREEN

The names of any successfully translated programs automatically appear in the System screen.

➎ Translated modules appear in the System screen with the OPL icon to the left of them. They have the same

name as the Program file from which they were translated with the extension .OPO added to their name,
and appear in the same folder as their corresponding Program file. Just move the highlight on to the name
of the translated program you want to run, and select it.

➌ Translated modules appear underneath the RunOpl icon. This appears at the right-hand end of the list of

icons (past the Program icon), and is usually off the right-hand edge of the screen. Just move the highlight
on to the name of the translated program you want to run, and press Enter.

Like the Program editor, RunOpl is assigned a keypress - you can press Control-Calc (hold down Control
and press the Calc button) as the short-cut to move to the RunOpl icon, whatever you’re doing. (If there is
a running program, this instead moves directly to it.)

When an OPL module has been successfully translated and run, you will usually run it from the System screen.
While you’re still editing and testing, however, it’s quicker to run it from inside the Program editor. This also
positions the cursor for you, if errors occur.

OPL

C R E A T I N G P R O G R A M S 7

STOPPING A PROGRAM WHILE IT�S RUNNING

➎ To stop a running program, press Ctrl+Esc. (If you’ve gone away from the running program it will still

be running, and you must first return to it. This is done by either selecting it from the System screen or by
using the list of open files to switch to it. Then Ctrl+Esc will stop it.)

To pause a running program, press Ctrl+Fn+S. It will be paused as soon as it next tries to display something
on the screen. Press Ctrl+Fn+Q to let the program resume running.

➌ To stop a running program, press Psion+Esc. (If you’ve gone away from the running program it will

still be running, and you must first return to it. This is done by pressing Control-Calc and/or selecting it
from under the RunOpl icon in the System screen before pressing Psion-Esc.)

To pause a running program, press Control-S. It will be paused as soon as it next tries to display
something on the screen. Press any other key to let the program resume running.

DISPLAYING A STATUS WINDOW

➎ The Series 5 does not have status windows: it has a toolbar instead. You should see the ‘Friendlier

Interaction’ section of the ‘GUI.pdf’ document for details of this.

➌ A temporary status window is always available while an OPL program is running. Press Psion-Menu to see

it. As you’ll see, there are keywords for displaying a status window yourself.

LOOKING AT A RUNNING PROGRAM

➎ If you translate and run a module from the Program editor, the Task list will still allow you to return to the

Program editor, even if the translated program has not finished running. A ‘Running…’ message is shown
— you can move the cursor around the program as normal, but you can’t edit it.

To return to the running version, either use the Task list or select it from the System screen. It will be in
bold, to show that it is currently running.

➌ If you translate and run a module from the Program editor, the Control-Word keypress will still return to

the Program editor, even if the translated program has not finished running. A ‘Busy’ message is shown —
you can move the cursor around the program as normal, but you can’t edit it.

To return to the running version, select it from beneath the RunOpl icon in the System screen. It will be in
bold, at the top of the list, to show that it is currently running. Alternatively, press Control-Calc to return to
it.

RUNNING MORE THAN ONE MODULE

If a module is running, and you select a second one from the System screen, the first one is not replaced — both
modules run together, and will be displayed in bold on the System screen. On the Series 5, you can swap
between them using the list of open files, on the Series 3c use Control-Shift-Calc.

MENU OPTIONS WHILE EDITING
While you’re typing in the procedure, all the options on the ‘Edit’ menu such as ‘Copy’ (‘Copy text’ on the
Series 3c) and ‘Paste’ (‘Insert text’ on the Series 3c) - are available and can be used as in Word. Refer to the
User Guide for more information.

OPL

C R E A T I N G P R O G R A M S 8

➎ The menu options available are in general similar to those found in other applications, such as Word. The

‘Tools’ menu has options for translating and running the current program. It also has a ‘Show last error’
option, to re-display an error which prevented successful translation, and a ‘Preferences’ option to
determine the fonts available and whether spaces, tabs and paragraph ends are shown in the Program
editor. It also provides an ‘Infrared’ option (see the User Guide for more details of using infrared). The
‘Create standard files’ option creates files in RAM from ROM files: see the ‘Calling Procedures’ section of
the this document for more details of this.

The ‘Format’ menu provides an ‘Font’ dialog for changing fonts and styles in the Program editor. The
‘Indentation’ option can be used to set the tab width and to turn auto-indentation on and off.

The ‘File’ menu also include ‘Import text’ and ‘Export as text’ options for importing text and exporting as
text. These can be used to convert Program files from Series 3a, 3c and Siena to Series 5 and vice versa. To
convert from earlier Program files to Series 5 Program files you need to:

1. Create a new Program document.

2. Import the text using the ‘Import text’ option from the ‘More’ cascade in the ‘File’ menu.

3. Translate and run as usual.

Note that there maybe some incompatibility between Series 5 OPL and earlier versions. See
Appendix A in the ‘Appends.pdf’ document for a summary of these and other documents as
appropriate for further details.

The toolbar on the left-hand side of the screen provides easy access via buttons to four options and also a
clock. The options are ‘Tran’ (‘Translate’), ‘Find’, ‘Find next’ and ‘Go to’. These options are all self-
explanatory, except perhaps for the last: ‘Go to’ gives a list (scrolled if necessary) of all the procedure in
the module. Selecting one of them jumps to the beginning of the specified procedure.

➌ The menus available are the same as in the Word application, except that the ‘Word’ menu has been

replaced by the ‘Prog’ menu. The ‘Prog’ menu has options for translating and running the current program.
It also has a ‘Show error’ option, to re-display an error which prevented successful translation, and an
‘Indentation’ option, for setting the tab width and to turn auto-indentation on and off in the Program editor.

Unlike Word, the Program editor only ever uses one template for creating new files, called ‘default’. When
you use the ‘New file’ option, the ‘Use template’ line is therefore unavailable; the new file is created using
the ‘default’ template automatically. If you wish to change the ‘default’ template, you can use the ‘Save as
template’ option to replace it with the current file. Do not try to swap templates between Word and the
Program editor. ‘Set preferences’ allows you to choose between bold/normal and mono-spaced/
proportional text. It also has options for showing tabs, spaces, paragraph ends, soft hyphens and forced line
breaks.

There is no ‘Password’ option.

➌➌➌➌➌ THE

DIAMOND KEY

The diamond key allows you to switch between a ‘Normal’ and an ‘Outline’ view of your OPL module. The
‘Outline’ view lists only the names of each procedure, for quick navigation around the module.

OPL

C R E A T I N G P R O G R A M S 9

SUMMARY

➎ Tap the ‘New file’ button on the system screen and select ‘Program’ as the ‘Program’.

Type in your procedure.

Select ‘Translate’ from the ‘Tools’ menu.

When a module translates correctly you are given the option to run it. You can run it again at any time,
either with ‘Run program’ in the ‘Tools’ menu, or directly from the System screen.

Use Ctrl+Esc to stop a running program.

Use Ctrl+Fn+S to pause a program and Ctrl+Fn+Q to restart it again.

➌ Move to the Program icon in the System screen and select the ‘New file’ option.

Type in your procedure.

Select ‘Translate’ from the ‘Prog’ menu.

When a module translates correctly you are given the option to run it. You can run it again at any time,
either with ‘Run’ in the ‘Prog’ menu, or directly from the RunOpl icon in the System screen.

Use Psion-Esc to stop a running program.

Use Control-S to pause a program and any other key to restart it.

Use Psion-Menu to display a status window.

OPL

V A R I A B L E S & C O N S T A N T S 10

VARIABLES & CONSTANTS

Programs can process data in a variety of ways. They may, for example, perform calculations
with numbers, or save and recall strings of text (such as names and phone numbers in a data
file).

In all cases, your program must be able to handle values - different types of numbers, strings,
and so on.

In OPL, there are two ways of handling values: variables and constants. Constants are fixed
values (which may be named on the Series 5). Variables are used to store values which may
change - for example, a variable called X may start with the value 3 but later take the value 7.

OPL

V A R I A B L E S & C O N S T A N T S 11

DECLARING VARIABLES
Most procedures begin by declaring (creating) variables:

LOCAL x,y,z

LOCAL is the word telling the Psion to create variables, with the names which follow - here x , y and z —
separated by commas.

The statement LOCAL x,y,z defines three variables called x , y and z . The Psion will recognise these names
whenever you use them in this procedure. (If you used them in another procedure, they wouldn’t be recognised;
the variables are ‘local’ to the procedure in which they are declared.)

These variables are initially given the value 0.

Any variables you wish to use must be declared at the start of a procedure.

CHOOSING THE VARIABLE

Before declaring variables, decide what information they are going to contain. There are different types of
variables for different sorts of values. If you try to give the wrong type of value to a variable, an error message
will be displayed.

You specify the type of each variable when you declare it, by adding a symbol at the end of its name.

NUMBERS

• For small whole numbers - for example 6 - use an integer variable. Integer variables have a % symbol on
the end, for example number%.
Integer variables can handle numbers only in the range -32768 to +32767. If you try to give an integer
variable a whole number bigger than this, an error message will be displayed. If a variable may have to
handle numbers outside normal integer range, make it a long integer variable.

• For larger whole numbers - for example 10000000 - use a long integer variable. Long integer variables
have an & symbol on the end, for example number& .
Long integer variables can handle whole numbers in the range -2147483648 to +2147483647.

• For non-whole numbers - for example 2.5 - use a floating-point variable. Floating-point variables have no
symbol on the end: price , for example.
If you know that at some stage in your program your variable will have to handle non-whole num-
bers, like 1.2, use a floating-point, not an integer variable. Otherwise you may get unpredictable results.
(There’s more about this later in this section.)

• For very large whole numbers outside long integer range you should also use floating-point variables.

➎ It is possible to use the full available range of 64-bit floating-point values, i.e. all real numbers with

absolute values in the range 2.2250738585072015E-308 to 1.7976931348623157E+308 and 0. Precision
remains limited to about 15 significant figures in this range. It is also possible to use numbers which have
absolute values in the range 5E-324 to 2.2250738585072015E-308 (called denormals), however the
precision decreases in this range to only 1 significant figure at the lower end. It is possible to enforce the
ranges used by the Series 3c and other earlier Psion machines (see the Series 3c section below) by using
the SETFLAGS command. See the ‘Alphabetic Listing’ section of the ‘Glossary.pdf’ document for details
of this.

Constants for the maximum and minimum values of all variable types are given in Const.oph. See the ‘Calling
Procedures’ section of this document for details on how to use this file and Appendix E in the ‘Appends.pdf’
document for a listing of it.

OPL

V A R I A B L E S & C O N S T A N T S 12

➌ Floating-point variables can handle numbers as big as ±9.99999999999e99 and as small as ±1e-99, and 0.

Intermediate results in calculations (which are not displayed on the screen) may exceed this and take any
value in the full range of 64-bit floating point numbers (see the Series 5 section above) .

TEXT

For text - Are you sure? , 54th , etc. - use a string variable. (Pieces of text are called strings in OPL.)
String variables have a $ symbol on the end - for example, name$.

To declare a string variable, you must follow the $ symbol with the maximum length of string you want the
variable to handle in brackets. So if you want to store names up to 15 characters long in the variable name$,
declare it like this: LOCAL name$(15) Strings cannot be longer than 255 characters.

ARRAY VARIABLES

You may want a group of variables, for example to store lists of values. Instead of having to declare separate
variables a, b, c , d and e, you can declare array variables a(1) to a(5) in one go like this:

LOCAL a%(5) (array of integer variables)

LOCAL a(5) (array of floating-point variables)

LOCAL a$(5,8) (array of string variables)

or

LOCAL a&(5) (array of long integers)

The number in brackets is the number of elements in the array. So LOCAL a%(5) creates five integer variables:
a%(1) , a%(2) , a%(3) , a%(4) and a%(5) .

With strings, the second number in the brackets specifies the maximum length of the strings. All the elements in
the string array have the same capacity - for example, LOCAL ID$(5,10) allocates memory space for five
strings, each up to 10 characters in length.

OPL does not support two-dimensional arrays.

INITIAL VALUES

All numeric variables have zero as their initial value. String variables have a string with no characters in it (a
null or empty string). Every element in an array variable is also initialised in the appropriate way.

CHOOSING DESCRIPTIVE NAMES

To make it easier to write your programs, and understand them when you read through them at a later date, give
your main variables names which describe the values they hold. For example, in a procedure which calculates
fuel efficiency, you might use variables named speed and distance .

All variable names:

• May be entered in any combination of upper and lower case. sPeeD and SpEEd would be considered the
same name.

• Must not use any of the names of keywords, as listed in the ‘Alphabetic Listing’ section of the
‘Glossary.pdf’ document - if you use these you will see a ‘Declaration error’ message when you translate
your module.

OPL

V A R I A B L E S & C O N S T A N T S 13

Other constraints are machine dependent:

➎
• May be up to 32 characters long

• Must start with either an underscore (_) or an alphabetic character, but after that may use any combina-
tion of numbers, letters and the underscore character.

➌
• May be up to 8 characters long

• Must start with an alphabetic character, but after that may use any combination of numbers and letters

The $, & and % symbols are included in the 32 (or 8) characters allowed in variable names, so
V2345678901234567890123456789012% is too long to be a valid variable name, but
V234567890123456789012345678901% is acceptable (on the Series 5).

EXAMPLES

• LOCAL clients$(12),z&(3) declares one string variable, clients$, of capacity 12 characters, and
one long integer array variable containing three elements, z&(1) , z&(2) and z&(3)

• LOCAL AGE%,B5$(10),i declares one integer variable, AGE%, one string variable, B5$, of capacity 10
characters, and one floating-point variable, i

• LOCAL profit93 declares one floating-point variable, profit93

• LOCAL x,MAN6$(4,7) declares one floating-point variable, x , and one string array variable, man6$,
containing four elements, man6$(1) , man6$(2) , man6$(3) and man6$(4) , each of capacity 7
characters

FOR EFFICIENCY

• Integer variables use less memory than long integer variables, and both use less than floating-point.

• Integer variables are processed faster than floating-point.

GIVING VALUES TO VARIABLES

ASSIGNING VALUES

You can assign a value to a variable directly, like this:

x=5

y=10

This procedure adds two numbers together:

PROC add:
LOCAL x%,y%,z%
x%=569
y%=203

OPL

V A R I A B L E S & C O N S T A N T S 14

z%=x%+y%
PRINT z%
GET

ENDP

add: is the procedure name.

The LOCAL statement defines three variables x%, y% and z%, all initially with the value 0. PRINT displays the
value of z% on the screen. You can display the value of any variable like this.

PROC and ENDP define the beginning and end of the procedure as you saw in the previous section.

ASSIGNING VALUES TO STRING VARIABLES

String variables can be assigned text values like this:

a$=“some text”

The text you use must be enclosed in double quote characters.

ASSIGNING VALUES TO AN ARRAY VARIABLE

If you declare a%(4) , assign values to each of the elements in the array like this: a%(1)=56 , a%(2)=345 and
so on. Similarly for the other variable types: a(1)=.0346 , a&(3)=355440 , a$(10)=“name” .

ARITHMETIC OPERATIONS

You can use these operators:

+ plus

- minus or make negative

/ divide

* multiply

** raise to a power

% percentage

Operators have the same precedence as in the Calc application. For example, 3+51.3/8 is treated as
3+(51.3/8) , not (3+51.3)/8 . For more information on operators and precedence, see Appendix B.

VALUES FROM FUNCTIONS

There are two kinds of keyword - commands and functions:

• A command is just a straightforward instruction to OPL to do some particular thing. PRINT and PAUSE,
for example, are commands.

• A function is just like a command but it also returns a value which you can then use.

GET is, in fact, a function; it waits for you to press a key on the keyboard, and then returns a value which
identifies the key which was pressed. (In previous example programs, the value returned by GET was ignored,
as GET was being used to provide a pause while you read the screen. This is a common use of the GET
function.)

OPL

V A R I A B L E S & C O N S T A N T S 15

The number returned by GET will always be a small whole number, so you might store it away in an integer
variable, like this:

a%=GET

There is more about the GET function later in this section.

EXPRESSIONS

You can assign a value to a variable with an expression - that is, a combination of numbers, variables, and
functions. For example:

z=x+y/2 gives the z the value of x plus the value of y/2 .

z=x*y+34.78 gives z the value of x times y , plus 34.78 .

z=x+COS(y) gives z the value of x plus the cosine of y .

COS is another OPL function. Unlike the GET function, COS requires a value or variable to work with. As you
can see, you put this in brackets, after the function name. Values you give to functions in this way are called
arguments to the function. There is more information about arguments in the next section.

All of the above are operations using the variables x and y - assigning the result to z and not actually affecting
the value of x or y .

The ways you can change the values of variables fall into these groups:

• Arithmetic operations, such as multiplication or addition - for example z=sales+costs or z=y%*(4-
x%)

• Using one of the OPL functions, for example z=SIN(PI/6)

or

• Using certain keywords like INPUT or EDIT which wait for you to type in values from the keyboard.

SELF REFERENCE

In expressions, variables can refer to themselves. For example:

z%=z%+1 (make the value of z% one greater than its current value)

x%=x%/4+y (make the value of x% a quarter of its current value, plus the value of y)

CONSTANTS

In an OPL program, numbers (and strings in quote marks) are sometimes called constants. In practice, you will
use constants without thinking about them. For example:

x=0.32

x%=569

x&=32768

x$=“string”

x(1)=4.87

OPL

V A R I A B L E S & C O N S T A N T S 16

OPL can also represent hexadecimal constants. Integers specified in hexadecimal must be preceded by a $ and
long integers by a &. For example, $f or &80000000. This is explained under the HEX$ entry in the
‘Alphabetic Listing’ section of the ‘Glossary.pdf’ document.

Exponential notation may be useful for very large or very small numbers. Use E (capital or lower case) to mean
“times ten to the power of” - for example, 3.14E7 is 3.14×107 (31400000), while 1E-9 is 1×10-9 (0.000000001).

➎ The CONST command may be used to declare constants. This makes it possible to assign a name to a constant

value so it may be used throughout the module. This has the advantage of making it possible to change just
one statement rather than many to change the value of a single constant. See the ‘Calling Procedures’ section
of this document for more details of how to do this.

PROBLEMS WITH INTEGERS

When calculating an expression, OPL uses the simplest arithmetic possible for the numbers involved. If all of
the numbers are integers, integer arithmetic is used; if one is outside integer range, but within long integer range,
then long integer arithmetic is used; if any of the numbers are not whole numbers, or are outside long integer
range, floating-point arithmetic is used.

This has the benefit of maximising speed, but you must beware of calculations going out of the range of the type
of arithmetic used. For example, in X=200*300 both 200 and 300 are integers, so integer arithmetic is used
for speed (even though X is a floating-point variable). However, the result, 60000, cannot be calculated because
it is outside integer range (32767 to -32768), so an ‘Overflow’ error is produced.

You can get around this by using the INT function, which turns an integer into a long integer, without changing
its value. If you rewrite the previous example as X=INT(200)*300 , OPL has to use long integer arithmetic,
and can therefore give the correct result (60000). (If you understand hexadecimal numbers, you can instead
write one of the numbers as a hexadecimal long integer, e.g. 200 would become &C8.)

Integer arithmetic uses whole numbers only. For example, if y% is 7 and x% is 4, y%/x% gives 1. However,
you can use the INTF function to convert an integer or long integer into a floating-point number, forcing
floating-point arithmetic to be used for example, INTF(y%)/x% gives 1.75. This rule applies to each part of
an expression - e.g. 1.0+2/4 works out as 1.0+0 (=1.0), while 1+2.0/4 works out as 1+0.5 (=1.5).

If one of the integers in an all-integer calculation is a constant, you can instead write it as a floating-point
number. 7/4 gives 1, but 7/4.0 gives 1.75.

OPERATIONS ON STRINGS

If a$ is “down” and b$ is “wind” , then the statement c$=a$+b$ means c$ becomes “downwind” .

Alternatively, you could give c$ the same value with the statement c$=“down”+”wind” .

When adding strings together, the result must not be longer than the maximum length you declared e.g. if you
declared LOCAL a$(5) then a$=“first”+”second” would cause a ‘String is too long’ error to be
displayed.

Most operators do not work on strings. To cut up strings, use string functions like MID$, LEFT$ and RIGHT$,
explained in the ‘Alphabetic Listing’ section of the ‘Glossary.pdf’ document. You need them to extract even a
single character you cannot, for example, refer to the fourth character in a$(7) as a$(4) .

DISPLAYING VARIABLES
PRINT is one of the most useful OPL commands. Use it to display any combination of text messages and the
values of variables.

OPL

V A R I A B L E S & C O N S T A N T S 17

WHERE THE CURSOR GOES AFTER A PRINT

In general, each PRINT statement ends by moving to a new line. For example:

A%=127 :PRINT “A% is”

PRINT a%

would display as

A% is

127

You can stop a PRINT statement from moving to a new line by ending it with a semicolon. For example:

A%=127 :PRINT “A% is”;

PRINT a%

would display as

A% is127

If you end a PRINT statement with a comma, it stays on the same line, but displays an extra space. For example:

A%=127 :PRINT “A% is”,

PRINT a%

would display as

A% is 127

DISPLAYING A LIST OF THINGS

You can use commas or semicolons to separate things to be displayed on one line, instead of using one PRINT
statement for each. They have the same effect as before:

A%=127 :PRINT “A% is”,a%

would display as

A% is 127

while

user$=“Fred”

PRINT “Hello”,user$;“!”

would display as

Hello Fred!

DISPLAYING THE QUOTE CHARACTER

Each string you use with PRINT must start and end with a quote character. Inside the string to display, you can
represent the quote character itself by entering it twice. So PRINT “Press “” key” displays as Press “
key , while PRINT ““”” displays a single quote character.

OPL

V A R I A B L E S & C O N S T A N T S 18

VALUES FROM THE KEYBOARD

If you want a program to be reusable, it often needs to be able to accept different sets of information each time
you use it. You can do this with the INPUT command, which takes numbers and text typed in at the keyboard
and stores them in variables.

For example, this simple procedure converts from Pounds Sterling to Deutschmarks. It asks you to type in two
numbers - the number of Pounds Sterling, and the current exchange rate. You can edit as you type the numbers -
the Delete key, for example, deletes characters, and Esc clears everything you’ve typed. Press Enter when
you’ve finished each number. The values are assigned to the variables pounds and rate , and the result of the
conversion is then displayed:

PROC exch:
LOCAL pounds,rate
AT 1,4
PRINT “How many Pounds Sterling?”,
INPUT pounds :REM value from keyboard
PRINT “Exchange rate (DM to £1)?”,
INPUT rate :REM value from keyboard
PRINT “=”,pounds*rate,“Deutschmarks”
GET

ENDP

Here PRINT is used to show messages (often called prompts) before the two INPUT commands, to say what
information needs to be typed in. In both cases the PRINT command ends in a comma, which displays a single
space, and keeps the cursor position on the same line. Without the commas, the numbers you type to the INPUT
commands would appear on the line below.

The value entered to an INPUT command must be of the appropriate kind for the variable which INPUT is
setting. If you enter the wrong type (for example, if you enter the string three for the floating-point variable
rate), INPUT will show a ? prompt, and wait for you to enter another value.

When using INPUT with a numeric variable (integer, long integer or floating-point), you can enter any number
within the range of that type of variable. Note that if you enter a non-whole number as the value for an integer
variable, it will take only the whole number part (so e.g. if you enter 12.75 for an integer variable, it will be set
to 12).

COMMENTS

The REM command lets you add comments to a program to help explain how it works. Begin the comment with
the word REM (short for ‘remark’). Everything after the REM command is ignored.

If you put a REM command on the end of a line, the colon you would normally put before it is optional. For
example, you could use either of these:

CLS :REM Clears the screen

or

CLS REM Clears the screen

AT COMMAND

This positions the cursor or your message at the co-ordinates you specify. Use the command like this:

AT column%,row%

where column% and row% give the character position to use.

AT 1,1 positions the cursor to the top left corner.

OPL

V A R I A B L E S & C O N S T A N T S 19

SINGLE KEYPRESSES

In addition to using INPUT to ask for values, your program can ask for single keypresses. Use one of these
functions:

• GET waits for a keypress and returns the key pressed.

• KEY returns a key if any was pressed, but doesn’t wait for one.

Every separate letter, number or symbol has a number which represents it, called a character code. The full list
of character codes - the character set - for the Series 5 may be found in Appendix D and for the Series 3c is
included as an appendix to the User Guide. GET and KEY return the character code of the key pressed for
example, if A were pressed, these functions would return the value 65. KEY returns 0 if no key was pressed.

KEY$ and GET$ work in the same way as KEY and GET, except that they return the key pressed as a string, not
as a character code:

• GET$ waits for a keypress and returns the key pressed, as a string.

• KEY$ returns a key if any was pressed, but doesn’t wait for one. KEY$ returns a null string if no key was
pressed.

Unlike INPUT, these functions do not display the key pressed on the screen, and do not wait for you to press
Enter.

EXAMPLE USING GET$

PROC kchar:
LOCAL k$(1)
PRINT “Press a key, A-Z:”
k$=GET$
PRINT “You pressed”,k$
PAUSE 60

ENDP

Single keypresses are often useful for making decisions. A program might, for example, offer a set of choices
which you choose from by typing the word’s first letter, like this:

Add (A) Erase (E) or Copy (C) ?

Or it might ask for confirmation of a decision, by displaying a YES or NO? message and waiting until Y or N
is pressed.

See the ‘Loops and Branches’ section of this document for details of how to identify which key is pressed.

MODIFIER KEYS

If you need to check for the Shift, Control, Psion (on the Series 3c and Siena only) Fn (Series 5 only) keys and/
or Caps Lock being used, see the description of the KMOD function, in the ‘Alphabetic Listing’ section of the
‘Glossary.pdf’ document.

OPL

V A R I A B L E S & C O N S T A N T S 20

SUMMARY
Declare variables with one or more LOCAL statements in the line after PROC:

• Integer variables - for example year%

• Floating-point variables - for example price

• String variables - for example name$(12) where the maximum length is given in the brackets

• Long integer variables - for example profit&

Variables will be floating-point unless you add a symbol to the end of the variable name.

• Array variables - for example prices%(4) or clients$(5,12) where the first number inside the brackets
specifies the number of elements, and the second number in the brackets, in the case of string arrays,
specifies the maximum length.

All identifiers may have a maximum length of 32 characters (8 on the Series 3c).

Assign values to variables:

• Expressions - for example x=5.5/y , profit=x-y

• INPUT command - for example INPUT a$

• ‘Add’ strings - for example a$=“MR”+names$

REM allows you to add comments to a program.

AT positions the cursor.

GET and KEY return the key pressed as a character code.

GET$ and KEY$ return the key pressed as a single-character string.

GET and GET$ wait until a key is pressed, KEY and KEY$ do not.

OPL

L O O P S & B R A N C H E S 21

LOOPS & BRANCHES

The programs in the two previous sections consist of a number of instructions which are ex-
ecuted one by one, from start to finish.

However, there are a number of other ways a program can proceed:

••••• Repeating a set of instructions (called loops)

••••• Doing one set of instructions or another (called IF statements)

••••• Jumping from one line of your program to another

OPL

L O O P S & B R A N C H E S 22

REPEATING INSTRUCTIONS (LOOPS)
The DO...UNTIL and WHILE...ENDWH commands are structures - they don’t actually do anything to your
data, but control the order in which other commands are executed:

• DO...UNTIL repeats a set of instructions until a certain condition is true.

• WHILE...ENDWH repeats a set of instructions so long as a certain condition is true.

There is a test condition at the end of the DO...UNTIL loop, and at the beginning of the WHILE...ENDWH loop.

DO...UNTIL
PROC test:

LOCAL a%
a%=10
DO

PRINT “A=”;a%
a%=a%-1

UNTIL a%=0
PRINT “Finished”
GET

ENDP

The instruction DO says to OPL:

“Execute all the following instructions until an UNTIL is reached. If the condition following UNTIL is not met,
repeat the same set of instructions until it is.”

The first time through the loop, a%=10. 1 is subtracted from a%, so that a% is 9 when the UNTIL statement is
reached. Since a% isn’t zero yet, the program returns to DO and the loop is repeated.

a% goes down to 8, and again it fails the UNTIL condition. The loop therefore repeats 10 times until a% does
equal zero.

When a% equals zero, the program continues with the instructions after UNTIL.

The statements in a DO...UNTIL loop are always executed at least once.

WHILE...ENDWH
PROC test2:

LOCAL a%
a%=10
WHILE a%>0

PRINT “A=”;a%
a%=a%-1

ENDWH
PRINT “Finished”
GET

ENDP

The instructions between the WHILE and ENDWH statements are executed only if the condition following the
WHILE is true - in this case if a% is greater than 0.

OPL

L O O P S & B R A N C H E S 23

Initially, a%=10 and so A=10 is displayed on the screen. a% is then reduced to 9. a% is still greater than zero, so
A=9 is displayed. This continues until A=1 is displayed. a% is then reduced to zero, and so Finished is
displayed.

Unlike DO...UNTIL, it’s possible for the instructions between WHILE and ENDWH not to be executed at all.

EXAMPLE USING WHILE...ENDWH

PROC newkey:
WHILE KEY :ENDWH
PRINT “Press a new key.”

ENDP

This procedure ignores any keys which may already have been typed, then waits for a new keypress.

KEY returns the value of a key that was pressed, or 0 if no key has been pressed. WHILE KEY :ENDWH reads
any keys previously pressed, one by one, until they have all been read and KEY returns zero.

CHOOSING BETWEEN INSTRUCTIONS
In a program, you might have several possible cases (x% may be 1, or it may be 2, or 3...) and want to do
something different for each one (if it’s 1, do this, but if it’s 2, do that...). You can do this with the IF...ENDIF
structure:

IF condition1
do these statements

ELSEIF condition2
do these statements

ELSEIF condition3
do these statements
.
.

ELSE
do these statements

ENDIF

These lines would do either

• the statements following the IF line (if condition1 is met)

or

• the statements following one of the ELSEIF lines (if one of condition2, condition3... is met)

or

• the statements following the ELSE line (if none of condition1, condition2, condition3... have been met).

and then continue with the statements after the ENDIF.

You can cater for as many cases as you like with ELSEIF statements. You don’t have to have any ELSEIFs.
There may be either one ELSE statement or none; you do not specify conditions for the ELSE statement.

Every IF in your program must be matched by an ENDIF - otherwise you’ll see an error message when you
try to translate the module. The structure must start with an IF and end with an ENDIF.

OPL

L O O P S & B R A N C H E S 24

�NESTING� LOOPS - THE �TOO COMPLEX� MESSAGE
You can have up to eight DO...UNTIL, WHILE...ENDWH and/or IF...ENDIF structures nested within each
other. If you nest them any deeper, a ‘Too complex’ error message will be displayed.

EXAMPLE USING IF

PROC zcode:
LOCAL g%
PRINT “Are you going to press Z?”
g%=GET
IF g%=%Z OR g%=%z

PRINT “Yes!”
ELSE

PRINT “No.”
ENDIF
PAUSE 60

ENDP

% OPERATOR

The program checks character codes with the % operator. %a returns the code of a, %Z the code of Z and so on.
Using %A is entirely equivalent to using 65, the actual code for A, but it saves you having to look it up, and it
makes your program easier to follow.

Be careful not to confuse character codes like these with integer variables.

OR OPERATOR

OR lets you check for either of two conditions. OR is an example of a logical operator. There is more about
logical operators later in this section.

EXAMPLE USING DO...UNTIL AND IF

PROC testny:
DO
g$=UPPER$(GET$)
UNTIL g$=“N” OR g$=“Y” REM wait for a Y or N
IF g$=“N” REM was it an N?

... REM ‘N’ pressed
ELSE REM must have been a Y

... REM ‘Y’ pressed
ENDIF

ENDP

This procedure checks for a ‘Y’ or ‘N’ keypress. You’d put your own code in the IF statement, where ... has
been used.

ARGUMENTS TO FUNCTIONS
Some functions, as with commands like PRINT and PAUSE, require you to give a value or values. These values
are called arguments. The UPPER$ function needs you to specify a string argument, and returns the same string
but with all letters in upper case. For example, UPPER(“12.+aBcDeF”) returns 12.+ABCDEF.

OPL

L O O P S & B R A N C H E S 25

FUNCTIONS AS ARGUMENTS TO OTHER FUNCTIONS

Since GET$ returns a string, you can use this as the argument for UPPER$. UPPER$(GET$) waits for you to
press a key, because of the GET$; the UPPER$ takes the string returned and, if it’s a letter, returns it in upper
case. This means that you can check for Y without having to check for y as well.

�TRUE� AND �FALSE�
The test condition used with DO...UNTIL, WHILE...ENDWH and IF...ENDIF can be any expression, and may
include any valid combination of operators and functions. Examples:

Condition Meaning

x=21 does the value of x equal 21? (Note - as this is a test condition, it does not assign x
the value 21)

a%<>b% is the value of a% not equal to the value of b%?

x%=(y%+z%) is the value of x% equal to the value of y%+z%? (does not assign the value y%+z% to
x%).

The expressions actually return a logical value - that is, a value meaning either ‘True’ or ‘False’. Any non-zero
value is considered ‘True’ (to return a ‘True’ value, OPL uses -1), while zero means ‘False’. So if a% is 6 and
b% is 7, the expression a%>b% will return a zero value, since a% is not greater than b%.

➎ Constants for ‘True’ and ‘False’ are given in Const.oph. See the ‘Calling Procedures’ section of this

document for details of how to use this file and Appendix E in the ‘Appends.pdf’ document for a listing of
it.

These are the conditional operators:

< less than <= less than or equal to

> greater than >= greater than or equal to

= equal to <> not equal to

LOGICAL OPERATORS

The operators AND, OR and NOT allow you to combine or change test conditions. This table shows their
effects. (c1 and c2 represent conditions.)

Example Result Integer returned

c1 AND c2 True if both c1 and c2 are true -1

False if either c1 or c2 are false 0

c1 OR c2 True if either c1 or c2 is true -1

False if both c1 and c2 are false 0

NOT c1 True if c1 is false -1

False if c1 is true 0

However, AND, OR and NOT become bitwise operators - something very different from logical operators -
when used exclusively with integer or long integer values. If you use IF A% AND B% , the AND acts as a
bitwise operator, and you may not get the expected result. You would have to rewrite this as IF A%<>0 AND
B%<>0. (Operators, including bitwise operators, are discussed further in Appendix B in the ‘Appends.pdf’
document.)

OPL

L O O P S & B R A N C H E S 26

JUMPING TO A DIFFERENT LINE

JUMPING OUT OF A LOOP: BREAK

The BREAK command jumps out of a DO...UNTIL or WHILE...ENDWH structure. The line after the UNTIL
or ENDWH statement is executed, and the lines following are then executed as normal. For example:

DO

...

IF a=c

BREAK

ENDIF

...

UNTIL a=b [PC1]

x%=3

...

JUMPING TO THE TEST CONDITION: CONTINUE

The CONTINUE command jumps from the middle of a loop to its test condition. The test condition is either the
UNTIL line of a DO...UNTIL loop or the WHILE line of a WHILE...ENDWH loop. For example:

WHILE a<b

...

IF a=c

CONTINUE

ENDIF

...

ENDWH

 ...

JUMPING TO A �LABEL�: GOTO

The GOTO command jumps to a specified label. The label can be anywhere in the same procedure (after any
LOCAL or GLOBAL variable declarations). In this example, when the program reaches the GOTO statement, it
jumps to the label exit:: , and continues with the statement after it.

GOTO exit
PRINT “MISS THIS LINE”
PRINT “AND THIS ONE”
exit::

The two PRINT statements are missed out.

Labels themselves must end in a double colon. This is optional in the GOTO statement - both GOTO exit::
and GOTO exit are OK.

The jump to the label always happens - it is not conditional.

Don’t use GOTOs instead of DO...UNTIL or WHILE...ENDWH, as they make procedures difficult to
understand.

OPL

L O O P S & B R A N C H E S 27

VECTORING TO A LABEL: VECTOR/ENDV

VECTOR jumps to one of a list of labels, according to the value in an integer variable. The list is terminated by
the ENDV statement. For example:

VECTOR p%
FUNCA,FUNCX
FUNCR

ENDV
PRINT “p% was not 1/2/3” :GET :STOP

FUNCA::
PRINT “p% was 1” :GET :STOP

FUNCX::
PRINT “p% was 2” :GET :STOP

FUNCR::
PRINT “p% was 3” :GET :STOP

Here, if p% is 1, VECTOR jumps to the label FUNCA:: . If it is 2, it jumps to FUNCX:: , and if 3, FUNCR:: . If
p% is any other value, the program continues with the statement after the ENDV statement.

STOPPING A PROGRAM

The above example introduces the STOP command. This stops a running program completely, just as if the end
of the program had been reached. In a module with a single procedure, STOP has the same effect as using
GOTO to jump to a label above the final ENDP.

UNTIL 0, WHILE 1

Zero and non-zero are logical values meaning ‘False’ and ‘True’ respectively. UNTIL 0 and WHILE 1
therefore mean ‘do forever’, since the condition 0 is never ‘True’ and the condition 1 is always ‘True’. Use
loops with these conditions when you need to check the real condition somewhere in the middle of the loop.
When the real condition is met, you can BREAK out of the loop.

For example:

PROC test:
WHILE 1

... REM some other lines here
IF KEY :BREAK :ENDIF

... REM some other lines here
ENDWH

ENDP

This example uses the KEY command. KEY returns 0 if no key has been pressed. When a key is pressed, KEY
returns a non-zero value which counts as ‘True’, and the BREAK is executed.

OPL

L O O P S & B R A N C H E S 28

SUMMARY
DO

statements
UNTIL condition

WHILE condition
statements

ENDWH

IF condition
statements

[ELSEIF condition
statements]

[ELSE
statements]

ENDIF

VECTOR int%
label1, label2
label3...

ENDV
...

label1::
...

label2::
...

label3::
...

GOTO label jumps to label::

BREAK goes to the first line after the end of the loop - the line following the UNTIL or ENDWH line.

CONTINUE goes to the test condition of the loop - the UNTIL or the WHILE line.

STOP stops a running program completely.

OPL

C A L L I N G P R O C E D U R E S 29

CALLING PROCEDURES

The programs discussed in earlier sections have involved a single procedure in each module.
However, it is possible to have more than one procedure in a module.

The top procedure is always the one which is executed, but it may also call, by name, any of the
other procedures in the module. This procedure may in turn return a value, for example the
result of a calculation, to the calling procedure.

Variables can be made available to all the procedures in a module by using the GLOBAL rather
than LOCAL definition.

OPL

C A L L I N G P R O C E D U R E S 30

USING MORE THAN ONE PROCEDURE
If you wanted a single procedure to perform a complex task, the procedure would become long and complicated.
It is more convenient to have a module containing a number of procedures, each of which you can write and edit
separately.

Many OPL modules are in fact a set of procedures linked up - each procedure doing just one job (such as a
certain calculation) and then passing its results on to other procedures, so they can do other operations:

OPL is designed to encourage programs written in this way, since:

• You can store all the procedures which make up a program in the same module file

and

• One procedure can call, that is run, another.

MODULES CONTAINING MORE THAN ONE PROCEDURE

You can have as many procedures as you like in a module. Each must begin with PROC and end with ENDP.

When you run a translated module it is always the first procedure, at the top of the module, which is
actually run. When this finishes, the module stops; any other procedures in the file are only run if and when
they are called.

Although you can use any name you want, it’s common to give the first procedure a name like start .

Procedures which run on their own should be written and translated as separate modules, otherwise you won’t be
able to run them.

CALLING PROCEDURES

To run another procedure, simply give the name of the procedure (with the colon). For example, this module
contains two procedures:

PROC one:
PRINT “Start”
PAUSE 40
two: REM calls procedure two:
PRINT “Finished”
PAUSE 40

ENDP

Procedure asking for
values/decisions

procedure

procedure

procedure

Controlling
procedure, pasting
values and
receiving results
back

module

Various
procedures
performing
calculations,
accessing files and
returning

OPL

C A L L I N G P R O C E D U R E S 31

PROC two:
PRINT “Doing...”
PAUSE 40

ENDP

Running this module would run procedure one: , with this effect: Start is displayed; after a PAUSE it calls
two: , which displays Doing... ; after another PAUSE two: returns to the one: procedure; one: displays
Finished ; and after a final PAUSE, one: finishes.

➎ Remember the ‘Go to’ button on the toolbar allows you to jump between procedures, for quick navigation

around the module.

➌ Remember the diamond key allows you to switch between a ‘Normal’ and an ‘Outline’ view of your OPL

module. The ‘Outline’ view lists only the names of each procedure, for quick navigation around the
module.

USES OF CALLING PROCEDURES

Calling procedures can be used to:

• Structure your programs more clearly so they’re easier to adapt after you’ve written them

• Use the same procedure in different programs - say, to perform a certain common calculation.

For example, when your program asks you “Do this or do that?”, make two procedure calls - either this: or
that: procedure - depending on what you reply, for example:

PROC input:
LOCAL a$(1)
PRINT “Add [A] or Subtract [S]?:”,
a$=UPPER$(GET$)
IF a$=“A”

add: REM first procedure
ELSEIF a$=“S”

subtract: REM second procedure
ENDIF

ENDP

To make full use of procedure calls, you must be able to communicate values between one procedure and
another. There are two ways of doing this: global variables and parameters.

PARAMETERS
Values can be passed from one procedure to another by using parameters. They look and act very much like
arguments to functions.

In the example below, the procedure price: calls the procedure tax: . At the same time as it calls it, it passes
a value (in this case, the value which INPUT gave to the variable x) to the parameter p named in the first line of
tax: . The parameter p is rather like a new local variable inside tax: , and it has the value passed when tax:
is called. (The tax: procedure is not changing the variable x .)

The tax: procedure displays the value of x plus 17.5% tax.

PROC price:
LOCAL x
PRINT “ENTER PRICE”,

OPL

C A L L I N G P R O C E D U R E S 32

INPUT x

PRINT “PRICE INCLUDING TAX =”,p*1.175
ENDP

• In the called procedure, follow the procedure name by the names to be used for the parameters, enclosed
by brackets and separated by commas - for example proc2:(cost,profit).

The parameter type is specified as with variables - for example p for a floating-point parameter, p% for an
integer, p& for a long integer, p$ for a string. You can’t have array parameters.

• In the calling procedure, the values for the parameters are given in brackets, in the right order and sepa-
rated by commas, after the colon of the called procedure - for example proc2:(60,30).

The values passed as parameters may be the values of variables, strings in quotes, or constants. So a call might
be calc:(a$,x%,15.8) and the first line of the called procedure PROC calc:(name$,age%,salary)

In the called procedure, you cannot assign values to parameters - for example, if p is a parameter, you
cannot use a statement like p=10 .

You will see a ‘Type mismatch’ error displayed if you try to pass the wrong type of value to a parameter -
for example, 45 to (a$) .

MULTIPLE PARAMETERS

In the following example, the second procedure tax2: has two parameters:

• The value of the price variable x is passed to the parameter p1.

• The value of the tax rate variable r is passed to the parameter p2.

tax2: displays the price plus tax at the rate specified.

PROC price2:
LOCAL x,r
PRINT “ENTER PRICE”,
INPUT x
PRINT “ENTER TAX RATE”,
INPUT r

tax:(x) REM Passes the value of x to p
GET

ENDP

PROC tax:(p)

PRINT p1+p2 %
ENDP

This uses the % symbol as an operator - p1+p2 % means p1 plus p2 percent of p1 . Note the space before the
%; without it, p2% would be taken as representing an integer variable.

See Appendix B in the ‘Appends.pdf’ document for more information about the % operator.

tax2:(x,r)
GET

ENDP

PROC tax2:(p1,p2)

OPL

C A L L I N G P R O C E D U R E S 33

RETURNING VALUES

In the following example, the RETURN command is used to return the value of x plus tax at r percent, to be
displayed in price3: . This is very similar to the way functions return a value.

The tax3: procedure calculates, but doesn’t display the result. This means it can be called by other procedures
which need to perform this calculation but do not necessarily need to display it.

PROC price3:
LOCAL x,r
PRINT “ENTER PRICE”,
INPUT x
PRINT “ENTER TAX RATE”,
INPUT r
PRINT “PRICE INCLUDING TAX =”,tax3:(x,r)

GET

ENDP

PROC tax3:(p1,p2)

RETURN p1+p2 %

ENDP

Only one value may be returned by the RETURN command.

The name of a procedure which returns a value must end with the correct identifier - $ for string, % for integer,
or & for long integer. To return a floating-point number, it should end with none of these symbols. For example,
PROC abcd$: can return a string, while PROC counter%: can return an integer. In this example, ref$:
returns a string:

PROC refname:
LOCAL a$(30),b$(2)
PRINT “Enter reference and name:”,
INPUT a$
b$=ref$:(a$)
PRINT “Ref is:”,b$
GET

ENDP

PROC ref$:(name$)
RETURN LEFT$(name$,2)
REM LEFT$ takes first 2 letters of name$

ENDP

If you don’t use the RETURN command, a string procedure returns the null string (“”). Other (numeric) types
of procedure return zero.

OPL

C A L L I N G P R O C E D U R E S 34

GLOBAL VARIABLES
You can only return one value with the RETURN command. If you need to pass back more than one value, use
global variables.

Instead of declaring LOCAL x%,name$(5) declare GLOBAL x%,name$(5). The difference is that:

• Local variables are valid only in the procedure in which they are declared.

• Global variables can also be used in any procedures (including those in loaded modules) called by the
procedure in which they are declared.

So this module would run OK:

PROC one:
GLOBAL a%
PRINT a%
two:
GET

ENDP

PROC two:
a%=2 REM Sees a% declared in one:
PRINT a%

ENDP

When you run this, the value 0 is displayed first, and then the value 2.

You would see an ‘Undefined externals’ error displayed if you used LOCAL instead of GLOBAL to declare a%,
since the procedure two: wouldn’t recognise the variable a%. In general, though, it is good practice to use the
LOCAL command unless you really need to use GLOBAL.

A local declaration overrides a global declaration in that procedure. So if GLOBAL a% was declared in a
procedure, which called another procedure in which LOCAL a% was declared, any modifications to the value of
a% in this procedure would not effect the value of the global variable a%.

PASSING BACK VALUES

You can effectively pass as many values as you like back from one procedure to another by using global
variables. Any modifications to the value of a variable in a called procedure are automatically registered in
the calling procedure. For example:

PROC start:
GLOBAL varone,vartwo
varone=2.5
vartwo=2
op:
PRINT varone,vartwo
GET

ENDP

PROC op:
varone=varone*2
vartwo=vartwo*4

ENDP

This would display 5 8

OPL

C A L L I N G P R O C E D U R E S 35

�UNDEFINED EXTERNALS� ERROR

If, perhaps because of a typing error, you use a name which is not one of your variables, no error occurs when
you translate the module. This is because it could be the name of a global variable, declared in a different
procedure, which might be available when the procedure in question was called. If no such global variable is
available, an ‘Undefined externals’ error is shown when the translated module is run. This also displays the
variable name which caused the error, together with the module and procedure names, in this format: ‘Error in
MODULE\PROCEDURE, VARIABLE’.

SERIES 5 HEADER FILES, CONSTANTS AND PROCEDURE PROTOTYPES
On the Series 5, OPL allows you to include header files which may include definitions of procedure prototypes
and constants, but not procedures themselves. (Constants and procedure prototypes may also be declared at the
top of modules themselves, although it is tidier to put them into a header file. Indeed, including a file is logically
identical to replacing the INCLUDE statement by the file’s contents.)

A header file is included in a module using the INCLUDE command at the beginning of the module, outside any
procedure. For example,

INCLUDE “Header.oph”

The filename of the header may or may not include a path. If it does include a path, then OPL will only scan the
specified folder for the file. However, the default path for INCLUDE is \System\Opl\ , so when INCLUDE
is called without specifying a path, OPL looks for the file firstly in the current folder and then in
\System\Opl\ in all drives from Y: to A: and then in Z:, excluding any remote drives.

Commonly the statement,

DECLARE EXTERNAL

will follow the INCLUDE declaration. DECLARE EXTERNAL causes the translator to report ‘Undefined
externals’ errors if any variables or procedures are used before they are declared, rather than leaving this until
runtime.

Procedure prototypes are declared with the command EXTERNAL. For example,

EXTERNAL Proc1:

A prototype is a declaration of the name of the procedure along with the arguments it takes. This amounts to the
same as PROC declaration with the PROC keyword, which declares the start of a procedure, omitted. The
procedure may then be referred to before it is defined when the DECLARE EXTERNAL statement has been
made. As well as reporting ‘Undefined externals’ error at translate-time, the other advantage of using the
DECLARE EXTERNAL and EXTERNAL statements is that it allows parameter type-checking to be performed
at translate-time rather than at runtime, and also provides the necessary information for the translator to coerce
numeric argument types, thus avoiding ‘Type violation’ errors at runtime. Hence a ‘Type violation’ error does
not result in the following example, even though a & does not precede the 2 passed to the procedure two:() ,

DECLARE EXTERNAL
EXTERNAL two:(long&)
PROC one:

two:(2)
ENDP

PROC two:(long&)
..

ENDP

The same coercion occurs as when calling the built-in keywords.

OPL

C A L L I N G P R O C E D U R E S 36

Constants are declared with the command CONST. For example,

CONST KConstant=1.0

Constants are treated as literals, not stored as data. They also have global scope and once a value is assigned to
them, it cannot be altered within the same program. The declarations must be made outside any procedure. A
constant’s name, just like that of a GLOBAL or LOCAL variable, has the normal type-specification indicators
(%, &, $ or nothing for floats). By convention, all constants are named with a leading K to distinguish them from
variables.

Const.oph is the standard header file in the ROM. It provides many of the standard constant declarations
required for effective and maintainable OPL programming on the Series 5. For convenient reference, the
contents Const.oph is reproduced in full in Appendix E. This and other files stored in the ROM (for example,
OPX header files: see the ‘OPX.pdf’ document) may be created in RAM by using the ‘Create standard files’
option in the ‘Tools’ menu in the Program editor.

See also the ‘Alphabetic Listing’ section of the ‘Glossary.pdf’ document.

SUMMARY
Call a procedure by stating its name, including the colon.

Pass parameters to a procedure by following the procedure call with the values for the parameters, e.g.
calc2:(4.5,32) . In the called procedure, follow the procedure name with the parameter names, e.g. PROC
calc2:(mod,div%) .

To make variables declared in one procedure accessible to called procedures, declare the variables with
GLOBAL instead of LOCAL.

➎ INCLUDE may be used to include a header file which contains constant definitions and procedure

prototypes.

DECLARE EXTERNAL may be used to

• cause the translator to report an error if any variables or procedures are used before they are declared

• allow parameter type-checking to be performed at translate-time rather than at runtime

• provide the necessary information for the translator to coerce numeric argument types.

Procedure prototypes are made with the EXTERNAL command.

Constant definitions are made with the CONST command.

OPL

I N D E X 37

INDEX

SYMBOLS

% operator 24
? prompt 18

A

arguments 15, 24
arithmetic operators 14
array variables 12
assign, value to variable 13
AT 18

B

bold text
while editing 8

BREAK 26

C

calling procedures 30
case of OPL keywords 2
character codes

with GET,GET$,KEY,KEY$ 19
coercion 35
commands

and functions 14
conditional operators 25
conditions, in loops 22
CONST 36
Const.oph 36
constants 15, 35
CONTINUE 26
Control-Calc 6, 7
Control-S 7
Control-Shift-Calc 7
Control-Word 4, 7
copying modules 5
‘Create standard files’ option 8, 36
Ctrl+Esc 7
Ctrl+Fn+S 7

D

‘Declaration’ error 12
DECLARE EXTERNAL 35
declaring variables 11

LOCAL and GLOBAL 34
‘default’ template 8

deleting modules 6
diamond

key 8
division problems 16
DO...UNTIL 22
documents 5

E

ELSE 23
ELSEIF 23
ENDIF 23
ENDP 2
ENDV 27
Esc key, in INPUT, EDIT 18
‘Export as text’ option 8
expressions 15
EXTERNAL 35

F

false 25
‘File is in use’ 6
floating-point variables 11

range 11, 12
‘Format’ menu 8
functions

and commands 14

G

GET 19
GET$ 19
GLOBAL 34
Global variables

returning values 34
global variables

‘Undefined externals’ 35
‘Go to’ option 8
GOTO 26

H

header files 35
hexadecimal 16

I

IF...ENDIF 23
‘Import text’ option 8
INCLUDE 35
indentation 3, 8
‘Infrared’ option 8

OPL

I N D E X 38

initial values of variables 12
INPUT 15, 18
integer arithmetic 16
integer variables 11

range 11

K

KEY 19
KEY$ 19
keypresses, recognising 19

L

labels 26, 27
LOCAL 11, 34
logical operators 25
logical values 25
long integer variables 11

range 11
loops

conditions 22
DO...UNTIL 22
IF...ENDIF 23
maximum nested 24
WHILE...ENDWH 22

M

modifiers 19
modules

containing more than one procedure 30
copying 5
creating 2, 5
deleting 6
editing 3
naming 2
running 5, 6
stopping while running 7
translating 4

N

names of variables 12
‘New file’ option

in Program editor 5
in System screen 2, 5

‘No system memory’ 4, 5
non-document files 5
number input 18

O

‘Open file’ option
in Program editor 5

operators
arithmetic 14
conditional 25
logical 25

OR 24
‘Outline’ option 8
‘Overflow’ 16

P

parameters 31
multiple 32
‘Type mismatch’ 32
types 32

Passwords
on OPL programs 8

pausing a program 7
PRINT 14, 16, 18
PROC 2
procedure prototypes 35
procedures

calling 30
creating 2
naming 3
translating 4

‘Prog’ menu 4, 8
Program icon 5
proportional font

while editing 8
Psion+Esc 7
Psion-Menu 7

R

range
floating-point 11, 12
integer 11
long integer 11

REM 18
RETURN 33
returning values 33
‘Run’ option

in Program editor 6
running a module 5, 6

S

‘Save as’ option 8
‘Show error’ option 8

OPL

I N D E X 39

‘Show last error’ option 8
statement 2
status window 7
STOP 27
stopping a running program 7
strings 12

adding (concatenating) 16
input 18

structures 22
‘Syntax error’ 4

T

tab width 8
template files

in Program editor 8
text input 18
‘Too complex’ 24
‘Tools’ menu 8
‘Translate’ option 4
translating modules 4
true 25
‘Type mismatch’ 32
‘Type violation’ 35

U

UIDs
application 5

‘Undefined externals’ 34, 35
UNTIL 0 27

V

variables
array 12
assigning values to 13
declaring 11
floating-point 11
GLOBAL and LOCAL 34
initial values 12
integer 11
long integer 11
names of 12
operations on 15
string 12
types 11

VECTOR 27

W

WHILE 1 27
WHILE...ENDWH 22

	Contents
	Creating & running programs
	Creating a new module
	Inside the Program editor
	An example procedure to type in
	Translating a module
	Running after translating
	File management
	More about running modules
	Stopping a program while it's running
	Menu options while editing
	Summary

	Variables & constants
	Declaring variables
	Numbers
	Text
	Array variables
	Initial values
	Choosing descriptive names
	Giving values to variables
	Assigning values
	Arithmetic operations
	Values from functions
	Expressions
	Constants
	Problems with integers
	Operations on strings
	Displaying variables
	Where the cursor goes after a PRINT
	Displaying a list of things
	Displaying the quote character
	Single keypresses
	Example using GET$
	Modifier keys
	Summary

	Loops & branches
	Repeating instructions (loops)
	DO...UNTIL
	WHILE...ENDWH
	Example using WHILE...ENDWH
	"Nesting" loops - the 'Too complex' message
	Example using IF
	OR operator
	Example using DO...UNTIL and IF
	Functions as arguments to other functions
	Logical operators
	Jumping to a different line
	Jumping out of a loop: BREAK
	Jumping to the test condition: CONTINUE
	Jumping to a 'label': GOTO
	UNTIL 0, WHILE 1
	Summary

	Calling procedures
	Using more than one procedure
	Modules containing more than one procedure
	Calling procedures
	Uses of calling procedures
	Parameters
	Multiple parameters
	Returning values
	GLOBAL variables
	Passing back values
	'Undefined externals' error
	Series 5 header files, constants and procedure prototypes
	Summary

	Index

