
 Copyright Psion Computers PLC 1997

This manual is the copyrighted work of Psion Computers PLC, London, England.

The information in this document is subject to change without notice.

Psion and the Psion logo are registered trademarks. Psion Series 5, Psion Series 3c, Psion Series 3a, Psion Series 3
and Psion Siena are trademarks of Psion Computers PLC.

EPOC32 and the EPOC32 logo are registered trademarks of Psion Software PLC.

 Copyright Psion Software PLC 1997

All trademarks are acknowledged.

OPL
EXAMPLE PROGRAMS

OPL

E X A M P L E P R O G R A M S

CONTENTS

WHEN YOU�RE TYPING IN ..1
ERRORS ... 1

COUNTDOWN TIMER .. 1
DICE ... 3
RANDOM NUMBERS .. 3
BIRTHDAYS .. 3
DATA FILES ... 4
RE-ORDER.. 6
STOPWATCH ... 7
INSERTING A NEW LINE IN A DATABASE ... 8
BOUNCING BALL .. 9
CIRCLES ... 9

➌ ZOOMING ... 12
ANIMATION EXAMPLE .. 13

➌ TWO-VOICE �ICE-CREAM VAN� SOUND .. 14

INDEX ...15

OPL

E X A M P L E P R O G R A M S 1

This document contains example programs written in OPL. The programs are not intended to
demonstrate all the features of OPL, but they should give you a few hints. To find out more about a
particular command or function, refer to the ‘Alphabetic Listing’ section of the ‘Glossary.pdf’ document.

There are some further example programs in the ‘Advanced Topics’ section of the ‘Advanced.pdf’
document.

WHEN YOU�RE TYPING IN

• You can type procedures in all uppercase, all lowercase or any mixture of the two. Be careful with character
codes, though - %A is different to %a.

• When there is more than one command or function on a line, separate each one with a space and colon - for
example:
CLS :PRINT “hello” :GET
However, the colon is optional before a REM statement for example:
CLS REM Clears the screen
and
CLS :REM Clears the screen
are both OK.

• Put a space between a command and the arguments which follow it - for example PRINT a$. But don’t put
a space between a function and the arguments in brackets - for example CHR$(16) .

• It doesn’t matter how many spaces or tabs you have at the beginning of a line.

ERRORS

The following programs do not include full error handling code. This means that they are shorter and easier to
understand, but may fail if, for example, you enter the wrong type of input to a variable.

If you want to develop other programs from these example programs, it is recommended that you add some error
handling code to them. See the ‘Error Handling’ section of the ‘Advanced.pdf’ document for further details.

COUNTDOWN TIMER

➎ For the Series 5:

PROC timer:
LOCAL min&,sec&,secs&,i%
sec&=1
dINIT “Countdown timer”
dLONG min&,“Minutes”,0,59
dLONG sec&,“Seconds”,0,59
dBUTTONS “Cancel”,-27,“Start”,%s
IF DIALOG=%s

FONT 12,16
secs&=sec&+60*min&
WHILE secs&

PAUSE -20 REM a key gets us out
IF KEY

RETURN
ENDIF

OPL

E X A M P L E P R O G R A M S 2

secs&=secs&-1
AT 20,6 :PRINT NUM$(secs&/60,-2);“m”
AT 24,6 :PRINT NUM$(mod&:(secs&,int(60)),-2);“s”

ENDWH
DO

BEEP 5,300
PAUSE 10
IF KEY :BREAK :ENDIF
i%=i%+1

UNTIL i%=10
ENDIF

ENDP

PROC mod&:(a&,b&)
REM modulo function
REM computes (a&)mod(b&)
RETURN a&-(a&/b&)*b&

ENDP

➌ For the Series 3c and Siena:

PROC timer:
LOCAL min&,sec&,secs&,i%
CACHE 2000,2000
sec&=1
dINIT “Countdown timer”
dLONG min&,”Minutes”,0,59
dLONG sec&,”Seconds”,0,59
dBUTTONS “Cancel”,-27,”Start”,13
IF DIALOG=13

STATUSWIN ON
FONT 11,16
secs&=sec&+60*min&
WHILE secs&

PAUSE -20 REM a key gets us out
IF KEY

RETURN
ENDIF
secs&=secs&-1
AT 20,6 :PRINT NUM$(secs&/60,-2);”m”
AT 24,6 :PRINT NUM$(mod&:(secs&,int(60)),-2);”s”

ENDWH
DO

BEEP 5,300
PAUSE 10
IF KEY :BREAK :ENDIF
i%=i%+1

UNTIL i%=10
ENDIF

ENDP

OPL

E X A M P L E P R O G R A M S 3

PROC mod&:(a&,b&)
REM modulo function
REM computes (a&)mod(b&)
RETURN a&-(a&/b&)*b&

ENDP

DICE
When the program is run, a message is displayed saying that the dice is rolling. You then press a key to stop it. A
random number from one to six is displayed and you choose whether to roll again or not.

PROC dice:
LOCAL dice%
DO

CLS :PRINT “DICE ROLLING:”
AT 1,3 :PRINT “Press a key to stop”
DO

dice%=(RND*6+1)
AT 1,2 :PRINT dice%

UNTIL KEY
BEEP 5,300
dINIT “Roll again?”
dBUTTONS “No”,%N,“Yes”,%Y

UNTIL DIALOG<>%y
ENDP

RANDOM NUMBERS

In this example, the RND function returns a random floating-point number, between 0 and 0.9999999... It is then
multiplied by 6, and 1 is added, to give a number from 1 to 6.9999999... This is rounded down to a whole
number (from 1 to 6) by assigning to the integer dice% .

BIRTHDAYS
This procedure finds out on which day of the week people were born.

PROC Birthday:
LOCAL day&,month&,year&,DayInWk%
DO

dINIT
dTEXT “”,“Enter your date of birth”,2
dTEXT “”,“Use numbers, eg 23 12 1963”,$202
dLONG day&,“Day”,1,31
dLONG month&,“Month”,1,12
dLONG year&,“Year”,1900,2155
IF DIALOG=0

BREAK
ENDIF
DayInWk%=DOW(day&,month&,year&)
CLS :PRINT DAYNAME$(DayInWk%),day&,month&,year&

OPL

E X A M P L E P R O G R A M S 4

dINIT “Again?”
dBUTTONS “No”,%N,“Yes”,%Y

UNTIL DIALOG<>%y
ENDP

The DOW function works out what day of the week, from 1 to 7, a date is. The DAYNAME$ function then
converts this to MON, TUE and so on. MON is 1 and SUN is 7.

DATA FILES
The following module works on a data file called DATA, containing names, addresses, post codes and telephone
numbers. It assumes this file has already been created with a statement like this:

CREATE “DATA”,A,nm$,ad1$,ad2$,ad3$,ad4$,tel$

➎ To use a database created with the Data application, see the ‘Series 5 Database Handling’ section of the

‘Database.pdf’ document.

➌ To use the DATA file which the Database application uses, you need to open “\DAT\DATA.DBF” .

The first procedure is the controlling, calling procedure, offering you choices. The next two let you add or edit
records.

PROC files:
GLOBAL nm$(255),ad1$(255),ad2$(255)
GLOBAL ad3$(255),ad4$(255),tel$(255),title$(30)
LOCAL g%
OPEN “DATA”,A,nm$,ad1$,ad2$,ad3$,ad4$,tel$
DO

CLS
dINIT “Select action”
REM !!Swap prompt and body in dTEXT for Series 3c and Siena!!
dTEXT “Add new record”,“”,$402
dTEXT “Find and edit a record”,“”,$402
g%=DIALOG
IF g%=2

add:
ELSEIF g%=3

edit:
ENDIF

UNTIL g%=0
CLOSE

ENDP

PROC add:
nm$=“” :ad1$=“” :ad2$=“”
ad3$=“” :ad4$=“” :tel$=“”
title$=“Enter a new record”
IF showd%:

APPEND
ENDIF

ENDP

OPL

E X A M P L E P R O G R A M S 5

PROC edit:
LOCAL search$(30),p%
dINIT “Find and edit a record”
dEDIT search$,“Search string”,15
IF DIALOG

FIRST
IF FIND(“*”+search$+“*”)=0

ALERT(“No matching records”)
RETURN

ENDIF
DO

nm$=A.nm$:ad1$=A.ad1$:ad2$=A.ad2$
ad3$=A.ad3$:ad4$=A.ad4$:tel$=A.tel$
title$=“Edit matching record”
IF showd%:

UPDATE :BREAK
ELSE

NEXT
ENDIF
FIND(“*”+search$+“*”)
IF EOF

ALERT(“No more matching records”)
BREAK

ENDIF
UNTIL 0

ENDIF
ENDP

PROC showd%:
LOCAL ret%
dINIT title$
dEDIT nm$,“Name”,25
dEDIT ad1$,“Street”,25
dEDIT ad2$,“Town”,25
dEDIT ad3$,“County”,25
dEDIT ad4$,“Postcode”,25
dEDIT tel$,“Phone”,25
ret%=DIALOG
IF ret%

A.nm$=nm$:A.ad1$=ad1$:A.ad2$=ad2$
A.ad3$=ad3$:A.ad4$=ad4$:A.tel$=tel$

ENDIF
RETURN ret%

ENDP

OPL

E X A M P L E P R O G R A M S 6

RE-ORDER
When you use the Data application and enter or change an entry, it goes to the end of the database file. However,
if , in your address book, each entry begins with a person’s second name - for example, Tate, Hazel - you
can use this program to re-order all of the entries. This doesn’t change the way you find an entry, but after
running it you can step through it like a paper address book, or print it out neatly ordered.

This procedure can be used as required for any data file in internal memory or on memory disk for the Series 5
or on Ram SSDs for the Series 3c. For the Series 3c, note that if used on a data file held on a Flash SSD it would
use up disk space each time you run it. The dialog it shows is set to show data files used by Data.

You can adapt this procedure to sort other types of data files in other ways.

Note that on the Series 5, this would be better done with the more advanced features available in the
Database OPX. See the ‘Using OPXs on the Series 5’ section of the ‘Advanced.pdf’ document for more
details of this. You could also use restriction of files by UID in the dFILE keyword to restrict to databases
only.

PROC reorder:
LOCAL last%,e$(255),e%,lpos%,n$(255),c%
n$=“\dat*.dbf”
dINIT “Re-order Data file”
dFILE n$,”Filename”,0
IF DIALOG REM returns 0 if cancelled

OPEN n$,a,a$
LAST :last%=POS
IF COUNT>0

WHILE last%<>0
POSITION last% :e%=POS
e$=UPPER$(a.a$)
DO

IF UPPER$(a.a$)<e$
e$=UPPER$(a.a$) :e%=POS

ENDIF
lpos%=POS :BACK

UNTIL pos=1 and lpos%=1
POSITION e%
PRINT e$
UPDATE :last%=last%-1

ENDWH
ENDIF
CLOSE

ENDIF
GET

ENDP

If you try to reorder a file which is already open (i.e. shown in bold on the System screen) you will see a “File’
is in use’ (‘File or device in use’ on the Series 3c) error. You should close the file and then try again.

OPL

E X A M P L E P R O G R A M S 7

STOPWATCH
Here is a simple stopwatch with lap times. Note that the Psion switches off automatically after a time if no keys
are pressed; you may want to disable this feature (from the Control Panel in the System screen on the Series 5 or
with the ‘Auto switch off’ option in the System screen on the Series 3c) before running this program.

Each timing is only accurate to within one second, as the procedure is based on the SECOND function.

PROC watch:
LOCAL k%,s%,se%,mi%
FONT 11,16
AT 20,1 :PRINT “Stopwatch”
AT 15,11 :PRINT “Press a key to start”
GET
DO

CLS :mi%=0 :se%=0 :s%=SECOND
AT 15,11 :PRINT “ S=Stop, L=Lap ”

loop::
k%=KEY AND $ffdf REM ensures upper case
IF k%=%S

GOTO pause::
ENDIF
IF k%=%L

AT 20,6 :PRINT “Lap: ”;mi%;“:”;
IF se%<10 :PRINT “0”; :ENDIF
PRINT se%;“ ”;

ENDIF
IF SECOND<>s%

s%=SECOND :se%=se%+1
IF se%=60 :se%=0 :mi%=mi%+1 :ENDIF
AT 17,8
PRINT “Mins”,mi%,“Secs”,
IF se%<10 :PRINT “0”; :ENDIF
PRINT se%;“ ”;

ENDIF
GOTO loop::

pause::
mINIT
mCARD “Watch”,“Restart”,%r,“Zero”,%z,“Exit”,%x
k%=MENU
IF k%=%r

GOTO loop::
ENDIF
UNTIL k%<>%z

ENDP

OPL

E X A M P L E P R O G R A M S 8

INSERTING A NEW LINE IN A DATABASE
If you insert a new label in a database, the entries will no longer match up with the labels. Rather than using the
‘Update’ option on every entry, to insert a suitable blank line in each one, you can use this program to do this for
the entire data file.

The Data application allows you to use as many lines (fields) as you want in an entry (record); OPL can only
access 32 fields. This program only lets you insert a new field in the first 16 fields, although you can adapt the
program simply to check up to 31 fields.

If, in Data, you enter a line longer than 255 characters, it is stored as two fields, with a character of code 20 at
the start of the second field. This program correctly handles any such fields.

The program checks that the 17th field is blank, as it will be overwritten by what was the 16th field. If a long
entry has a 17th field, and it contains text, the program skips this entry. The rest of longer entries - even if there
are more than 32 fields will be unchanged.

If you insert a new field at a position below the last label, Data will not show it, even when using ‘Update’.

The maximum record length in OPL is 1022 characters. The OPEN command will display a ‘Record too large’
error if the file contains a record longer than this.

PROC label:
LOCAL a%,b%,c%,d%,s$(128),s&,i$(17,255)
s$=“\dat*.dbf”
dINIT “Insert new field”
dFILE s$,“Data file”,0
dLONG s&,“Break at line (1-16)”,1,16
IF DIALOG

OPEN s$,A,a$,b$,c$,d$,e$,f$,g$,h$,i$,j$,k$,l$,m$,n$,o$,p$,q$
c%=COUNT :a%=1
WHILE a%<=c%

AT 1,1 :PRINT “Entry”,a%,”of”,c%,
IF A.q$=“” REM Entry (hopefully) not too long

i$(1)=A.a$:i$(2)=A.b$:i$(3)=A.c$:i$(4)=A.d$
i$(5)=A.e$:i$(6)=A.f$:i$(7)=A.g$:i$(8)=A.h$
i$(9)=A.i$:i$(10)=A.j$:i$(11)=A.k$:i$(12)=A.l$
i$(13)=A.m$:i$(14)=A.n$:i$(15)=A.o$:i$(16)=A.p$
d%=0 :b%=0
WHILE d%<s&+b% REM find field to break at

d%=d%+1
IF LEFT$(i$(d%),1)=CHR$(20) REM line>255...

b%=b%+1 REM ...so it’s 2 fields
ENDIF

ENDWH
b%=17
WHILE b%>d% REM copy the fields down

i$(b%)=i$(b%-1) :b%=b%-1
ENDWH
i$(d%)=“” REM and make an empty field
A.a$=i$(1) :A.b$=i$(2) :A.c$=i$(3) :A.d$=i$(4)
A.e$=i$(5) :A.f$=i$(6) :A.g$=i$(7) :A.h$=i$(8)
A.i$=i$(9) :A.j$=i$(10) :A.k$=i$(11) :A.l$=i$(12)
A.m$=i$(13) :A.n$=i$(14) :A.o$=i$(15) :A.p$=i$(16)

OPL

E X A M P L E P R O G R A M S 9

A.q$=i$(17)
ELSE

PRINT “has too many fields”
PRINT “Press a key...” :GET

ENDIF
UPDATE :FIRST
a%=a%+1

ENDWH :CLOSE
ENDIF

ENDP

BOUNCING BALL
PROC bounce:

LOCAL posX%,posY%,changeX%,changeY%,k%
LOCAL scrx%,scry%,info%(10)
SCREENINFO info%()
scrx%=info%(3) :scry%=info%(4)
posX%=1 :posY%=1
changeX%=1 :changeY%=1
DO

posX%=posX%+changeX%
posY%=posY%+changeY%
IF posX%=1 OR posX%=scrx%

changeX%=-changeX%
REM at edge ball changes direction
BEEP 2,600 REM low beep

ENDIF
IF posY%=1 or posY%=scry% REM same for y

changeY%=-changeY%
BEEP 2,200 REM high beep

ENDIF
AT posX%,posY% :PRINT “0”;
PAUSE 2 REM Try changing this
AT posX%,posY% :PRINT “ ”; REM removes old ‘0’ character
k%=KEY

UNTIL k%
ENDP

CIRCLES

➎ Here is an example program for drawing circles or ellipses, filled or unfilled for the Series 5:

PROC draw:
LOCAL d%
DO

dINIT “Draw a circle or an ellipse?”
dBUTTONS “Circle”,%c OR $200,“Ellipse”,%e OR $200,“Cancel”,-27
d%=DIALOG
IF d%=%c

circle:
ELSEIF d%=%e

OPL

E X A M P L E P R O G R A M S 10

ellipse:
ENDIF

UNTIL d%=0
ENDP

PROC circle:
LOCAL x&,y&,r&,f%
dINIT “Drawing parameters”
x&=320 :dLONG x&,”Centre x position”,0,639
y&=120 :dLONG y&,”Centre y position”,0,249
r&=20 :dLONG r&,”Radius”,1,320
f%=0 :dCHECKBOX f%,”Filled”
dBUTTONS “Draw”,%d,“Cancel”,-27
IF DIALOG

gAT x&,y&
gCIRCLE r&,f%
GET
gCLS

ENDIF
ENDP

PROC ellipse:
LOCAL x&,y&,hr&,vr&,f%
dINIT “Drawing parameters”
x&=320 :dLONG x&,”Centre x position”,0,639
y&=120 :dLONG y&,”Centre y position”,0,249
hr&=20 :dLONG hr&,”Horizontal Radius”,1,320
vr&=20 :dLONG vr&,”Vertical Radius”,1,320
f%=0 :dCHECKBOX f%,”Filled”
dBUTTONS “Draw”,%d,“Cancel”,-27
IF DIALOG

gAT x&,y&
gELLIPSE hr&,vr&,f%
GET
gCLS

ENDIF
ENDP

➌ Here are two example programs for drawing circles - the first hollow, the second filled for the Series 3c and

Siena:

PROC circle:
LOCAL a%(963),c&,d%,x&,y&,r&,h,y%,y1%,c2%
dINIT “Draw a circle”
x&=240 :dLONG x&,“Centre x pos”,0,479
y&=80 :dLONG y&,“Centre y pos”,0,159
r&=20 :dLONG r&,“Radius”,1,120
h=1 :dFLOAT h,“Relative height”,0,999
IF DIALOG

a%(1)=x&+r& :a%(2)=y& :a%(3)=4*r&
c&=1 :d%=2*r& :y1%=0

OPL

E X A M P L E P R O G R A M S 11

WHILE c&<=d%
c2%=c&*2 :y%=-SQR(r&*c2%-c&**2)*h
a%(2+c2%)=-2 :a%(3+c2%)=y%-y1%
y1%=y% :c&=c&+1

ENDWH
c&=1
WHILE c&<=d%

c2%=c&*2 :y%=SQR(r&*c2%-c&**2)*h
a%(2+a%(3)+c2%)=2 :a%(3+a%(3)+c2%)=y%-y1%
y1%=y% :c&=c&+1

ENDWH
gPOLY a%()

ENDIF
ENDP

PROC circlef:
LOCAL c&,d%,x&,y&,r&,h,y%
dINIT “Draw a filled circle”
x&=240 :dLONG x&,“Centre x pos”,0,479
y&=80 :dLONG y&,“Centre y pos”,0,159
r&=20 :dLONG r&,“Radius”,1,120
h=1 :dFLOAT h,“Relative height”,0,999
IF DIALOG

c&=1 :d%=2*r& :gAT x&-r&,y& :gLINEBY 0,0
WHILE c&<=d%

y%=-SQR(r&*c&*2-c&**2)*h
gAT x&-r&+c&,y&-y% :gLINEBY 0,2*y%
c&=c&+1

ENDWH
ENDIF

ENDP

If you use gUPDATE OFF after the IF DIALOG line, and gUPDATE ON before the ENDIF, the procedure will
run a little faster. However, all but the smaller circles will be drawn rather jerkily, piece by piece.

OPL

E X A M P L E P R O G R A M S 12

➌ ZOOMING

This is an example for the Series 3c only. The Series 5 does not have status windows and the Siena does not
have large status windows owing to its screen size.

For each of the three types of status window, this program changes the font to implement zooming.

Press Psion-Z to cycle between small, medium and large fonts, and Shift-Psion-Z to cycle in the other direction.
Esc changes to the next status window.

As well as changing the font and style for the text window (for PRINT etc.), the FONT command automatically
changes the default graphics window size (ID=1) and the text window size to fit exactly in the space left by any
status window. (A special feature not used here is that FONT -$3fff,0 just changes the window sizes
without changing font).

The procedure dispinfo: uses the command SCREENINFO to display the margin sizes in pixels between the
default window and the text window, the text screen size in character units, and the text screen’s character width
and line height in pixels.

PROC tzoom:
STATUSWIN OFF REM no status window
zoom: REM display with zooming
STATUSWIN ON,2 REM large status window
zoom:
STATUSWIN ON,1 REM and small
zoom:

ENDP

PROC zoom:
LOCAL font%(3),font$(3,20),style%(3)
LOCAL g%,km%,zoom%
zoom%=1
font%(1)=13 :font$(1)=“(Mono 6x6)” :style%(1)=0
font%(2)=4 :font$(2)=“(Mono 8x8)” :style%(2)=0
font%(3)=12 :font$(3)=“(Swiss 16)” :style%(3)=16
g%=%z+$200
DO

IF g%=%z+$200
IF km% AND 2 REM Shift-PSION-Z

zoom%=zoom%-1
IF zoom%<1 :zoom%=3 :ENDIF

ELSE REM PSION-Z
zoom%=zoom%+1
IF zoom%>3 :zoom%=1 :ENDIF

ENDIF
FONT font%(zoom%),style%(zoom%)
PRINT “Font=”;font%(zoom%),font$(zoom%),
PRINT “Style=”;style%(zoom%)
dispinfo:
PRINT rept$(“1234567890”,15)
gBORDER 0

ENDIF
g%=GET
km%=KMOD

OPL

E X A M P L E P R O G R A M S 13

UNTIL g%=27
ENDP

PROC dispinfo:
LOCAL scrInfo%(10)
SCREENINFO scrInfo%()
PRINT “Left margin=”;scrInfo%(1),
AT 17,2 :PRINT “Top margin=”;scrInfo%(2)
PRINT “Screen width=”;scrInfo%(3)
AT 17,3 :PRINT “Screen height=”;scrInfo%(4)
PRINT “Char width=”;scrInfo%(7)
AT 17,4 :PRINT “Line height=”;scrInfo%(8)

ENDP

ANIMATION EXAMPLE
This program requires five bitmap files - one.pic to five.pic . Each of these would differ slightly. They
might, for example, be five ‘snapshots’ of a running human figure, each with the legs at a different point in their
cycle.

The program copies each bitmap into a window of its own, then makes each window visible in turn, each time
slightly further across the screen.

To make bitmap files, first draw the pattern you want with any of the graphics drawing commands. (Use
gLINEBY 0,0 to draw single dots.) When the pattern is complete, use gSAVEBIT to make the bitmap file. For
advanced animation, you could use a sprite as described in the ‘Using OPXs on the Series 5’ section of the
‘Advanced.pdf’ document for the Series 5, and as described in the ‘Advanced Topics’ section of the
‘Advanced.pdf’ document for the Series 3c and Siena.

PROC animate:
LOCAL id%(5),i%,j%,s$(5,10),w%,h%,edge%
REM example width and height
w%=16 :h%=28
REM screen edge - use 480 for Series 3c and 240 for Siena
edge%=640
REM need not have “.pic” in the following for Series 3c and Siena
s$(1)=“one.pic” :s$(2)=“two.pic” :s$(3)=“three.pic”
s$(4)=“four.pic” :s$(5)=“five.pic” :j%=1
WHILE j%<6

i%=gLOADBIT(s$(j%))
id%(j%)=gCREATE(0,0,w%,h%,0)
gCOPY i%,0,0,w%,h%,3
gCLOSE i% :j%=j%+1

ENDWH
i%=0 :gORDER 1,9
DO

j%=(i%-5*(i%/5))+1 REM (i% MOD 5)+1
gVISIBLE OFF REM previous window
gUSE id%(j%) REM new window
gSETWIN i%,20 REM position it
gORDER id%(j%),1 REM make foreground
gVISIBLE ON REM make visible
i%=i%+1 :PAUSE 2

UNTIL KEY OR (i%>(edge%-w%))
ENDP

OPL

E X A M P L E P R O G R A M S 14

➌ TWO-VOICE �ICE-CREAM VAN� SOUND

This example is for the Series 3c and Siena only.

The following program plays a rising and falling scale. It uses the amplifier-driven loudspeaker device (with
device driver SND:) which allows you to play tunes using two-note chords - ie it has two voices.

This program uses I/O keywords as described in the ‘Advanced Topics’ section. Take care to enter them exactly
as shown here.

PROC main:
LOCAL ret%,sndHand%
ret%=IOOPEN(sndHand%,“SND:”,-1) REM open the device
IF ret%<0

PRINT “Failed to start”
PRINT err$(err)
GET

ELSE
icecream:(sndHand%)
IOCLOSE(sndHand%)

ENDIF
ENDP

PROC icecream:(sndHand%)
LOCAL notes1%(4),notes2%(14)
LOCAL s1stat%,len1%,len2%
REM define 1st voice
notes1%(1)=1048 :notes1%(2)=96 REM freq, duration
notes1%(3)=524 :notes1%(4)=48
len1%=2 REM number of notes in voice 1
REM define 2nd voice
notes2%(1)=1048 :notes2%(2)=16
notes2%(3)=1320 :notes2%(4)=16
notes2%(5)=1568 :notes2%(6)=16
notes2%(7)=2092 :notes2%(8)=16
notes2%(9)=1568 :notes2%(10)=16
notes2%(11)=1320 :notes2%(12)=16
notes2%(13)=1048 :notes2%(14)=48
len2%=7 REM number of notes in voice 2
IOC(sndhand%,1,s1stat%,notes1%(),len1%)
REM voice 1 asynchronous
IOW(sndHand%,2,notes2%(),len2%)
REM voice 2 synchronous
IOWAITSTAT s1stat%

ENDP
notes1%() and notes2%() are set up to hold len1% and len2% notes to be played on voice 1 and voice 2
respectively. The number of notes to each voice must not exceed 16384.

Each note is composed of two consecutive integers in the array with the first of each pair giving the frequency in
Hz (middle A is 440Hz) and the second giving the note duration in quarter-beats per minute.

OPL

I N D E X 15

INDEX

F

‘File is in use’ 6

O

ordering a data file 6

P

printing
a data file 6

R

random numbers 3
RND 3

S

sorting a data file 6
stopwatch 7

Z

zooming 12

	Contents
	When you're typing in
	Errors
	Countdown Timer
	Dice
	Random numbers
	Birthdays
	Data files
	Re-order
	Stopwatch
	Inserting a new line in a database
	Bouncing Ball
	Circles
	Animation example

	Index

